How to find the arc length of a polar curve

 
 
Arc length of a polar curve blog post.jpeg
 
 
 

The formula we use to find the arc length of a polar curve

The arc length of a polar curve is simply the length of a section of a polar curve between two points aa and bb.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

We use the formula

L=abr2+(drdθ)2dθL=\int^b_a\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2}d\theta

where LL is the arc length

where rr is the equation of the polar curve

where drdθ\frac{dr}{d\theta} is the derivative of the polar curve

where aa and bb are the endpoints of the section

 
 

How to find the arc length of a curve given in polar coordinates


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Let’s do a couple examples where we find the arc length of a polar curve over a particular interval

Example

Find the arc length of the polar curve over the given interval.

r=cos2θ2r=\cos^2{\frac{\theta}{2}}

0θπ20\le\theta\le\frac{\pi}{2}

Before we can plug into the arc length formula, we need to find dr/dθdr/d\theta.

drdθ=2cosθ2[sinθ2](12)\frac{dr}{d\theta}=2\cos{\frac{\theta}{2}}\left[-\sin{\frac{\theta}{2}}\right]\left(\frac12\right)

drdθ=cosθ2sinθ2\frac{dr}{d\theta}=-\cos{\frac{\theta}{2}}\sin{\frac{\theta}{2}}

Now we can go ahead and solve for the arc length

L=0π2(cos2θ2)2+(cosθ2sinθ2)2 dθL=\int^{\frac{\pi}{2}}_0\sqrt{\left(\cos^2{\frac{\theta}{2}}\right)^2+\left(-\cos{\frac{\theta}{2}}\sin{\frac{\theta}{2}}\right)^2}\ d\theta

L=0π2cos4θ2+cos2θ2sin2θ2 dθL=\int^{\frac{\pi}{2}}_0\sqrt{\cos^4{\frac{\theta}{2}}+\cos^2{\frac{\theta}{2}}\sin^2{\frac{\theta}{2}}}\ d\theta

L=0π2cos2θ2(cos2θ2+sin2θ2) dθL=\int^{\frac{\pi}{2}}_0\sqrt{\cos^2{\frac{\theta}{2}}\left(\cos^2{\frac{\theta}{2}}+\sin^2{\frac{\theta}{2}}\right)}\ d\theta

Since cos2x+sin2x=1\cos^2{x}+\sin^2{x}=1, we get

L=0π2(cos2θ2)(1) dθL=\int^{\frac{\pi}{2}}_0\sqrt{\left(\cos^2{\frac{\theta}{2}}\right)(1)}\ d\theta

L=0π2cosθ2 dθL=\int^{\frac{\pi}{2}}_0\cos{\frac{\theta}{2}}\ d\theta

L=2sinθ20π2L=2\sin{\frac{\theta}{2}}\Big|^{\frac{\pi}{2}}_0

L=2sin(π22)2sin(02)L=2\sin{\left(\frac{\frac{\pi}{2}}{2}\right)}-2\sin{\left(\frac{0}{2}\right)}

L=2sinπ42sin0L=2\sin{\frac{\pi}{4}}-2\sin{0}

L=2222(0)L=2\cdot\frac{\sqrt{2}}{2}-2(0)

L=2L=\sqrt{2}


Let’s do another example.


Arc length of a polar curve for Calculus 2.jpg

The arc length of a polar curve is simply the length of a section of a polar parametric curve between two points a and b.

Example

Find the arc length of the polar curve over the given interval.

r=e2θr=e^{2\theta}

0θπ0\le\theta\le\pi

Before we can plug into the arc length formula, we need to find dr/dθdr/d\theta.

drdθ=2e2θ\frac{dr}{d\theta}=2e^{2\theta}

Plugging everything into the formula, we get

s=0π(e2θ)2+(2e2θ)2 dθs=\int^{\pi}_0\sqrt{\left(e^{2\theta}\right)^2+\left(2e^{2\theta}\right)^2}\ d\theta

s=0πe4θ+4e4θ dθs=\int^{\pi}_0\sqrt{e^{4\theta}+4e^{4\theta}}\ d\theta

s=0π5e4θ dθs=\int^{\pi}_0\sqrt{5e^{4\theta}}\ d\theta

s=50πe2θ dθs=\sqrt{5}\int^{\pi}_0e^{2\theta}\ d\theta

s=52e2θ0πs=\frac{\sqrt{5}}{2}e^{2\theta}\bigg|^{\pi}_0

s=52e2(π)52e2(0)s=\frac{\sqrt{5}}{2}e^{2(\pi)}-\frac{\sqrt{5}}{2}e^{2(0)}

s=52e2π52s=\frac{\sqrt{5}}{2}e^{2\pi}-\frac{\sqrt{5}}{2}

s=5(e2π1)2s=\frac{\sqrt{5}\left(e^{2\pi}-1\right)}{2}

 
Krista King.png
 

Get access to the complete Calculus 2 course