Finding the area inside both polar curves

 
 
Area inside both polar curves blog post.jpeg
 
 
 

Defining the area inside two polar curves

The area inside both curves is the area which is enclosed by both curves.

For example, given the polar curves 1. r=2r=2 and 2. r=4r=4, only the area inside r=2r=2 is inside both curves.

Some of the area inside r=4r=4 is outside of r=2r=2, so that area isn’t inside both curves.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 
 
area inside two circles
 

Unfortunately, not all of these kinds of problems will be this easy. There will always be multiple ways to go about finding the area inside both polar curves. For example, given the curves 1. r=3sinθr=3\sin{\theta} and 2. r=3cosθr=3\cos{\theta} whose graphs are

 
area inside sine and cosine curves
 

we could

find the area inside r=3sinθr=3\sin{\theta} and then subtract the area inside r=3sinθr=3\sin{\theta} but outside r=3cosθr=3\cos{\theta}

find the area inside r=3cosθr=3\cos{\theta} and then subtract the area inside r=3cosθr=3\cos{\theta} but outside r=3cosθr=3\cos{\theta}

Some sections of area will be easier to solve for than others. Therefore, the best way to solve for the area inside both curves is to graph them, then based on the graphs, look for the easiest areas to calculate and use those to go about finding the area inside both curves.

 
 

How to determine which curve is the inner curve and which is the outer, then calculate the area contained inside both curves at the same time


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding the area of the region enclosed by both polar curves

Example

Find the area of the region enclosed by both polar curves.

r=2r=2

r=3+2cosθr=3+2\cos{\theta}

We’ll graph the given curves to see what we’re dealing with.

area inside a circle and a cosine curve

From the graph, we can see that most of 1. r=2r=2 is also enclosed by 2. r=3+2cosθr=3+2\cos{\theta}. To find the area inside both curves, we could

use AT=A1A2A_T=A_1-A_2, where

ATA_T is the area inside both curves

A1A_1 is all of the area inside r=3+2cosθr=3+2\cos{\theta}

A2A_2 is the area inside r=3+2cosθr=3+2\cos{\theta} but outside r=2r=2

use AT=A1A2A_T=A_1-A_2, where

ATA_T is the area inside both curves

A1A_1 is all of the area inside r=2r=2

A2A_2 is the area inside r=2r=2 but outside r=3+2cosθr=3+2\cos{\theta}

Since finding the area inside r=2r=2 is a little easier than finding the area inside r=3+2cosθr=3+2\cos{\theta}, we’ll use the second option.

To find the area inside r=2r=2, we’ll use the area formula over the interval [0,2π][0,2\pi].

A1=αβ12r2 dθA_1=\int^{\beta}_{\alpha}\frac12r^2\ d\theta

A1=02π12(2)2 dθA_1=\int^{2\pi}_0\frac12(2)^2\ d\theta

A1=02π2 dθA_1=\int^{2\pi}_02\ d\theta

A1=2θ02πA_1=2\theta\big|^{2\pi}_0

A1=2(2π)2(0)A_1=2(2\pi)-2(0)

A1=4πA_1=4\pi

To find the area inside r=2r=2 but outside r=3+2cosθr=3+2\cos{\theta}, we’ll find the intersection points and then use the formula

A2=αβ12(rO2rI2) dθA_2=\int^{\beta}_{\alpha}\frac{1}{2}\left(r^2_O-r^2_I\right)\ d\theta, where

rO=2r_O=2

rI=3+2cosθr_I=3+2\cos{\theta}

We’ll find the intersection points by setting the polar equations equal to each other and solving for θ\theta.

2=3+2cosθ2=3+2\cos{\theta}

12=cosθ-\frac12=\cos{\theta}

θ=2π3, 4π3\theta=\frac{2\pi}{3},\ \frac{4\pi}{3}

The interval for this section of area is

[α,β]=[2π3,4π3][\alpha,\beta]=\left[\frac{2\pi}{3},\frac{4\pi}{3}\right]

If instead we wanted to find the area of outside r=2r=2 but inside r=3+2cosθr=3+2\cos{\theta}, we’d have to change the interval to [α,β]=[2π3,2π3][\alpha,\beta]=\left[-\frac{2\pi}{3},\frac{2\pi}{3}\right].

Plugging everything we know about that A2A_2 into the area formula, we get

A2=2π34π312[(2)2(3+2cosθ)2] dθA_2=\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}\frac12\left[(2)^2-(3+2\cos{\theta})^2\right]\ d\theta

A2=122π34π34(9+12cosθ+4cos2θ) dθA_2=\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}4-\left(9+12\cos{\theta}+4\cos^2{\theta}\right)\ d\theta

A2=122π34π34912cosθ4cos2θ dθA_2=\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}4-9-12\cos{\theta}-4\cos^2{\theta}\ d\theta

A2=122π34π3512cosθ4cos2θ dθA_2=\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}-5-12\cos{\theta}-4\cos^2{\theta}\ d\theta

A2=122π34π34cos2θ+12cosθ+5 dθA_2=-\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}4\cos^2{\theta}+12\cos{\theta}+5\ d\theta

Area inside both polar curves for Calculus 2.jpg

the best way to solve for the area inside both curves is to graph them, then based on the graphs, look for the easiest areas to calculate and use those to go about finding the area inside both curves.

Since cos2θ=12[1+cos(2θ)]\cos^2{\theta}=\frac12\left[1+\cos{(2\theta)}\right],

A2=122π34π34[12[1+cos(2θ)]]+12cosθ+5 dθA_2=-\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}4\left[\frac12\left[1+\cos{(2\theta)}\right]\right]+12\cos{\theta}+5\ d\theta

A2=122π34π32[1+cos(2θ)]+12cosθ+5 dθA_2=-\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}2\left[1+\cos{(2\theta)}\right]+12\cos{\theta}+5\ d\theta

A2=122π34π32+2cos(2θ)+12cosθ+5 dθA_2=-\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}2+2\cos{(2\theta)}+12\cos{\theta}+5\ d\theta

A2=122π34π32cos(2θ)+12cosθ+7 dθA_2=-\frac12\int^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}2\cos{(2\theta)}+12\cos{\theta}+7\ d\theta

A2=12[sin(2θ)+12sinθ+7θ]2π34π3A_2=-\frac12\left[\sin{(2\theta)}+12\sin{\theta}+7\theta\right]\Big|^{\frac{4\pi}{3}}_{\frac{2\pi}{3}}

Evaluate over the interval.

A2=12[sin(24π3)+12sin4π3+74π3]+12[sin(22π3)+12sin2π3+72π3]A_2=-\frac12\left[\sin{\left(2\cdot\frac{4\pi}{3}\right)}+12\sin{\frac{4\pi}{3}}+7\cdot\frac{4\pi}{3}\right]+\frac12\left[\sin{\left(2\cdot\frac{2\pi}{3}\right)}+12\sin{\frac{2\pi}{3}}+7\cdot\frac{2\pi}{3}\right]

A2=12(sin8π3+12sin4π3+28π3)+12(sin4π3+12sin2π3+14π3)A_2=-\frac12\left(\sin{\frac{8\pi}{3}}+12\sin{\frac{4\pi}{3}}+\frac{28\pi}{3}\right)+\frac12\left(\sin{\frac{4\pi}{3}}+12\sin{\frac{2\pi}{3}}+\frac{14\pi}{3}\right) 

Simplify the trigonometric functions.

A2=12[32+12(32)+28π3]+12[(32)+12(32)+14π3]A_2=-\frac12\left[\frac{\sqrt{3}}{2}+12\left(-\frac{\sqrt{3}}{2}\right)+\frac{28\pi}{3}\right]+\frac12\left[\left(-\frac{\sqrt{3}}{2}\right)+12\left(\frac{\sqrt{3}}{2}\right)+\frac{14\pi}{3}\right]

A2=12(321232+28π3)+12(32+1232+14π3)A_2=-\frac12\left(\frac{\sqrt{3}}{2}-\frac{12\sqrt{3}}{2}+\frac{28\pi}{3}\right)+\frac12\left(-\frac{\sqrt{3}}{2}+\frac{12\sqrt{3}}{2}+\frac{14\pi}{3}\right)

A2=12(1132+28π3)+12(1132+14π3)A_2=-\frac12\left(-\frac{11\sqrt{3}}{2}+\frac{28\pi}{3}\right)+\frac12\left(\frac{11\sqrt{3}}{2}+\frac{14\pi}{3}\right)

A2=113428π6+1134+14π6A_2=\frac{11\sqrt{3}}{4}-\frac{28\pi}{6}+\frac{11\sqrt{3}}{4}+\frac{14\pi}{6}

A2=223414π6A_2=\frac{22\sqrt{3}}{4}-\frac{14\pi}{6}

A2=11327π3A_2=\frac{11\sqrt{3}}{2}-\frac{7\pi}{3}

Find a common denominator.

A2=333614π6A_2=\frac{33\sqrt{3}}{6}-\frac{14\pi}{6}

A2=33314π6A_2=\frac{33\sqrt{3}-14\pi}{6}

Our last step is to solve for ATA_T using AT=A1A2A_T=A_1-A_2.

AT=4π33314π6A_T=4\pi-\frac{33\sqrt{3}-14\pi}{6}

AT=24π333+14π6A_T=\frac{24\pi-33\sqrt{3}+14\pi}{6}

AT=38π3336A_T=\frac{38\pi-33\sqrt{3}}{6}

 
Krista King.png
 

Get access to the complete Calculus 2 course