Finding a function's average value over a particular interval

 
 
Average value blog post.jpeg
 
 
 

What is the average value of a function?

In the same way that we can find the average of set of numbers, we can also find the average value of a function over a specific interval.

The formula we use to find the average value of a function f(x)f(x) over the interval [a,b][a,b] is

favg=1baabf(x) dxf_{avg}=\frac{1}{b-a}\int^b_af(x)\ dx

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Think about the average value of a function as the average height the function attains above the xx-axis. If the function were y=3y=3, then the height of the function is always 33 everywhere, so the average height of the function would also be 33. When the function gets more complicated, we can use the average value formula to find its average height on [a,b][a,b].

 
 

How to calculate a function’s average value over a particular interval


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Using the average value integration formula

Example

Calculate the average value of the function over the interval.

f(x)=x32x2+e2xf(x)=x^3-2x^2+e^{2x}

on [3,7][3,7]

We’ll use the formula for average value

favg=1baabf(x) dxf_{avg}=\frac{1}{b-a}\int^b_af(x)\ dx

and get

favg=17337x32x2+e2x dxf_{avg}=\frac{1}{7-3}\int^7_3x^3-2x^2+e^{2x}\ dx

favg=1437x32x2+e2x dxf_{avg}=\frac{1}{4}\int^7_3x^3-2x^2+e^{2x}\ dx

Average value for Calculus 2.jpg

Think about the average value of a function as the average height the function attains above the x-axis.

Next we can break the integral apart by term.

favg=1437x3 dx+14372x2 dx+1437e2x dxf_{avg}=\frac{1}{4}\int^7_3x^3\ dx+\frac{1}{4}\int^7_3-2x^2\ dx+\frac{1}{4}\int^7_3e^{2x}\ dx

favg=1437x3 dx2437x2 dx+1437e2x dxf_{avg}=\frac{1}{4}\int^7_3x^3\ dx-\frac{2}{4}\int^7_3x^2\ dx+\frac{1}{4}\int^7_3e^{2x}\ dx

Integrate.

favg=14(x44)3724(x33)37+14(e2x2)37f_{avg}=\frac14\left(\frac{x^4}{4}\right)\bigg|^7_3-\frac24\left(\frac{x^3}{3}\right)\bigg|^7_3+\frac14\left(\frac{e^{2x}}{2}\right)\bigg|^7_3

favg=x416x36+e2x837f_{avg}=\frac{x^4}{16}-\frac{x^3}{6}+\frac{e^{2x}}{8}\bigg|^7_3

Now we can evaluate on the interval.

favg=[(7)416(7)36+e2(7)8][(3)416(3)36+e2(3)8]f_{avg}=\left[\frac{(7)^4}{16}-\frac{(7)^3}{6}+\frac{e^{2(7)}}{8}\right]-\left[\frac{(3)^4}{16}-\frac{(3)^3}{6}+\frac{e^{2(3)}}{8}\right]

favg=150,367f_{avg}=150,367

The average value of the function f(x)=x32x2+e2xf(x)=x^3-2x^2+e^{2x} over the interval [3,7][3,7] is 150,367150,367.

 
Krista King.png
 

Get access to the complete Calculus 2 course