Average value for triple integrals

 
 
Average value for triple integrals blog post.jpeg
 
 
 

Formula for average value over an object

To find the average value of a function over some object EE, we’ll use the formula

favg=1V(E)Ef(x,y,z) dVf_{avg}=\frac{1}{V(E)}\int\int\int_Ef(x,y,z)\ dV

where V(E)V(E) is the volume of the object EE.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

In order to use the formula, we’ll have find the volume of the object, plus the domain of xx, yy, and zz so that we can set limits of integration, turn the triple integral into an iterated integral, and replace dVdV with dz dy dxdz\ dy\ dx.

 
 

How to calculate average value using a triple integral


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Average value over a cube

Example

Find the average value of the function over a cube with side length 22, lying in the first octant with one corner at the origin (0,0,0)(0,0,0) and three sides lying in the coordinate planes.

f(x,y,z)=3xyz2f(x,y,z)=3xyz^2

We’ll start by finding the volume of the cube. Since we’re dealing with a cube with side length 22, the volume will be

V(E)=(2)(2)(2)V(E)=(2)(2)(2)

V(E)=8V(E)=8

To find the limits of integration, we have to look at the object we’ve been given. In this case, it’s a cube whose corner is sitting at (0,0,0)(0,0,0) on the origin. Since the cube has side length 22, the limits of integration are x=[0,2]x=[0,2], y=[0,2]y=[0,2] and z=[0,2]z=[0,2].

Plugging everything we’ve found into the triple integral formula for average value, including the function itself, we get

favg=180202023xyz2 dz dy dxf_{avg}=\frac18\int^2_0\int^2_0\int^2_03xyz^2\ dz\ dy\ dx

favg=38020202xyz2 dz dy dxf_{avg}=\frac38\int^2_0\int^2_0\int^2_0xyz^2\ dz\ dy\ dx

Average value for triple integrals for Calculus 3.jpg

In order to use the formula, we’ll have find the volume of the object, plus the domain of x, y, and z.

Integrating with respect to zz, we get

favg=38020213xyz3z=0z=2 dy dxf_{avg}=\frac38\int^2_0\int^2_0\frac13xyz^3\Big|_{z=0}^{z=2}\ dy\ dx

favg=180202xyz3z=0z=2 dy dxf_{avg}=\frac18\int^2_0\int^2_0xyz^3\Big|_{z=0}^{z=2}\ dy\ dx

favg=180202xy(2)3xy(0)3 dy dxf_{avg}=\frac18\int^2_0\int^2_0xy(2)^3-xy(0)^3\ dy\ dx

favg=1802028xy dy dxf_{avg}=\frac18\int^2_0\int^2_08xy\ dy\ dx

Now we’ll integrate with respect to yy.

favg=18028(12)xy2y=0y=2 dxf_{avg}=\frac18\int^2_08\left(\frac12\right)xy^2\Big|_{y=0}^{y=2}\ dx

favg=1202xy2y=0y=2 dxf_{avg}=\frac12\int^2_0xy^2\Big|_{y=0}^{y=2}\ dx

favg=1202x(2)2x(0)2 dxf_{avg}=\frac12\int^2_0x(2)^2-x(0)^2\ dx

favg=12024x dxf_{avg}=\frac12\int^2_04x\ dx

Finally we’ll integrate with respect to xx.

favg=12(42x2)02f_{avg}=\frac12\left(\frac42x^2\right)\Big|_0^2

favg=x202f_{avg}=x^2\Big|_0^2

favg=(2)2(0)2f_{avg}=(2)^2-(0)^2

favg=4f_{avg}=4

The average value of the function f(x,y,z)=3xyz2f(x,y,z)=3xyz^2 over the cube EE is 44.

 
Krista King.png
 

Get access to the complete Calculus 3 course