How to converting rectangular equations into polar equations

 
 
Converting rectangular equations blog post.jpeg
 
 
 

Three formulas for converting between rectangular and polar equations

To convert rectangular equations to polar equations, we’ll use the following conversion formulas.

x=rcosθx=r\cos{\theta}

y=rsinθy=r\sin{\theta}

r2=x2+y2r^2=x^2+y^2

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 
 
 

How to convert an equation from rectangular coordinates to polar coordinates


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

An example of converting a rectangular equation into polar coordinates

Example

Convert the rectangular equation to a polar equation.

x23x+y2+2y=0x^2-3x+y^2+2y=0

Use r2=x2+y2r^2=x^2+y^2.

x2+y23x+2y=0x^2+y^2-3x+2y=0

r23x+2y=0r^2-3x+2y=0

To convert rectangular equations to polar equations, we’ll use three formulas.

Use x=rcosθx=r\cos{\theta} and y=rsinθy=r\sin{\theta}.

r23rcosθ+2rsinθ=0r^2-3r\cos{\theta}+2r\sin{\theta}=0

r2=3rcosθ2rsinθr^2=3r\cos{\theta}-2r\sin{\theta}

r=3cosθ2sinθr=3\cos{\theta}-2\sin{\theta}

Once we’ve eliminated all xx and yy variables, and replaced them with rr and θ\theta variables, we’re done with the conversion.

 
Krista King.png
 

Get access to the complete Calculus 2 course