Finding derivatives of logs and natural logs

 
 
Logarithmic derivatives blog post.jpeg
 
 
 

Formulas for the derivative of base-10 logs and natural logs

Given an exponential function in the form

y=loga[g(x)]y=\log_{a}{\left[g(x)\right]}

its derivative is

y=[1g(x)lna][g(x)]y'=\left[\frac{1}{g(x)\ln{a}}\right]\left[g'(x)\right]

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

In the case that our base a=ea=e, we have a special log\log that's called ln\ln. In other words, loge[g(x)]=ln[g(x)]\log_{e}{\left[g(x)\right]}=\ln{\left[g(x)\right]}. The natural log function

y=ln[g(x)]y=\ln{\left[g(x)\right]}

has a derivative of

y=[1g(x)][g(x)]y'=\left[\frac{1}{g(x)}\right]\left[g'(x)\right]

Let’s try an example with loga\log_a.

 
 

Examples of how to find the derivative of different kinds of log and natural log functions


 
Krista King Math Signup.png
 
Calculus 1 course.png

Take the course

Want to learn more about Calculus 1? I have a step-by-step course for that. :)

 
 

 
 

Finding the derivative of a base-10 log function

Example

Find the derivative of the logarithmic function.

y=6log8(5x4)y=6\log_8{\left(5x^4\right)}

To find the derivative we need to apply the derivative formula for log\log functions.

y=6(15x4ln8)(20x3)y'=6\left(\frac{1}{5x^4\ln{8}}\right)\left(20x^3\right)

y=120x35x4ln8y'=\frac{120x^3}{5x^4\ln{8}}

y=24xln8y'=\frac{24}{x\ln{8}}

Logarithmic derivatives for Calculus 1.jpg

When the base of a log is e, instead of 10, we call it the “natural logarithm.”

Finding the derivative of a natural log function

Example

Find the derivative of the logarithmic function.

y=5ln(2x3)y=5\ln{\left(2x^3\right)}

To find the derivative we need to apply the derivative formula for natural logs.

y=5(12x3)(6x2)y'=5\left(\frac{1}{2x^3}\right)\left(6x^2\right)

y=30x22x3y'=\frac{30x^2}{2x^3}

y=15xy'=\frac{15}{x}


Let’s try one final example that’s a little more complex.


A more complicated logarithmic derivative

Example

Find the derivative of the logarithmic function.

y=9ln(3x7)+(4x7)[log3(8x2)]2x12y=9\ln{\left(3x^7\right)}+\left(4x^7\right)\left[\log_3{\left(8x^2\right)}\right]-2x^{12}

We need to take the derivative one term at a time, applying the derivative formulas from the beginning of this section.

y=9(13x7)(21x6)+[(28x6)(log3(8x2))+(4x7)(18x2ln3)(16x)]24x11y'=9\left(\frac{1}{3x^7}\right)\left(21x^6\right)+\left[\left(28x^6\right)\left(\log_3{\left(8x^2\right)}\right)+\left(4x^7\right)\left(\frac{1}{8x^2\ln{3}}\right)(16x)\right]-24x^{11}

y=189x63x7+28x6log3(8x2)+64x88x2ln324x11y'=\frac{189x^6}{3x^7}+28x^6\log_3{\left(8x^2\right)}+\frac{64x^8}{8x^2\ln{3}}-24x^{11}

y=63x+28x6log3(8x2)+8x6ln324x11y'=\frac{63}{x}+28x^6\log_3{\left(8x^2\right)}+\frac{8x^6}{\ln{3}}-24x^{11}

 
Krista King.png
 

Get access to the complete Calculus 1 course