Finding volume with double integrals in polar coordinates

 
 
Finding volume for double integrals in polar coordinates blog post.jpeg
 
 
 

Setting up double integrals in polar coordinates

To evaluate a double polar integral, we’ll need to make sure that both function and the limits of integration are in terms of polar coordinates (r,θ)(r,\theta).

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

If we’re given a double integral in rectangular coordinates and asked to evaluate it as a double polar integral, we’ll need to convert the function and the limits of integration from rectangular coordinates (x,y)(x,y) to polar coordinates (r,θ)(r,\theta), and then evaluate the integral.

To change the function and limits of integration from rectangular coordinates to polar coordinates, we’ll use the conversion formulas

x=rcosθx=r\cos{\theta}

y=rsinθy=r\sin{\theta}

r2=x2+y2r^2=x^2+y^2

Remember also that when you convert dAdA or dy dxdy\ dx to polar coordinates, it converts as

dA=dy dx=r dr dθdA=dy\ dx=r\ dr\ d\theta

 
 

How to evaluate a double integral in polar coordinates


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Using the double integral in polar coordinates to find the volume of a solid

Example

Use a double polar integral to find the volume of the solid enclosed by the given curves.

z=x2+y2+4z=\sqrt{x^2+y^2+4}

z=4z=4

First, we’ll convert both functions to polar coordinates and get

z=r2+4z=\sqrt{r^2+4}

z=4z=4

Now we want to set the equations equal to each other to get points of intersection, so that we can figure out the limits of integration.

r2+4=4\sqrt{r^2+4}=4

r2+4=16r^2+4=16

r2=12r^2=12

r=±12r=\pm\sqrt{12}

r=±23r=\pm2\sqrt{3}

Since rr represents distance from the origin in the polar system, and radius can’t be negative, we change the 23-2\sqrt{3} to 00 and we can say that the limits of integration for rr are 0r230\le{r}\le2\sqrt{3}.

Next we can solve for the limits of integration with respect to θ\theta. Since we got r2=12r^2=12, which is the same as x2+y2=12x^2+y^2=12, we know the region is a circle, which means the limits of integration for θ\theta will be a full 360360^\circ, or 0θ2π0\le\theta\le2\pi.

Now we need to build our function. We need to figure out which function is further from the origin (has the outer radius) and which one is closer to the origin (has the inner radius). We know that z=4z=4 will always stay the same, no matter what the value of rr. But the value of z=r2+4z=\sqrt{r^2+4} can change, depending on the value of rr that we choose. If we plug in the upper and lower limits of integration, we get

z=(12)2+4z=\sqrt{\left(\sqrt{12}\right)^2+4}

z=16z=\sqrt{16}

z=4z=4

and

z=(0)2+4z=\sqrt{(0)^2+4}

z=4z=\sqrt4

z=2z=2

Since z=r2+4z=\sqrt{r^2+4} will sometimes have a value smaller than z=4z=4 (since we just found that z=2z=2 when we substitute r=0r=0), we’ll treat z=4z=4 as the outer function and z=r2+4z=\sqrt{r^2+4} as the inner function. Therefore, we get

V=D(4r2+4)r dr dθV=\int\int_D\left(4-\sqrt{r^2+4}\right)r\ dr\ d\theta

Adding the limits of integration, we get

V=02π023(4r2+4)r dr dθV=\int^{2\pi}_0\int^{2\sqrt{3}}_0\left(4-\sqrt{r^2+4}\right)r\ dr\ d\theta

V=02π0234rrr2+4 dr dθV=\int^{2\pi}_0\int^{2\sqrt{3}}_04r-r\sqrt{r^2+4}\ dr\ d\theta

Finding volume for double integrals in polar coordinates for Calculus 3.jpg

We need to figure out which function is further from the origin (has the outer radius) and which one is closer to the origin (has the inner radius).

Now we’ll evaluate the integral by splitting it into two separate integrals so that we can use u-substitution on the second one.

V=02π0234r dr dθ02π023rr2+4 dr dθV=\int^{2\pi}_0\int^{2\sqrt{3}}_04r\ dr\ d\theta-\int^{2\pi}_0\int^{2\sqrt{3}}_0r\sqrt{r^2+4}\ dr\ d\theta

u=r2+4u=r^2+4

du=2r drdu=2r\ dr

dr=du2rdr=\frac{du}{2r}

V=02π2r2r=0r=23 dθ02πr=0r=23ru(du2r) dθV=\int^{2\pi}_02r^2\Big|^{r=2\sqrt{3}}_{r=0}\ d\theta-\int^{2\pi}_0\int^{r=2\sqrt{3}}_{r=0}r\sqrt{u}\left(\frac{du}{2r}\right)\ d\theta

V=02π2r2r=0r=23 dθ02πr=0r=2312u12 du dθV=\int^{2\pi}_02r^2\Big|^{r=2\sqrt{3}}_{r=0}\ d\theta-\int^{2\pi}_0\int^{r=2\sqrt{3}}_{r=0}\frac12u^\frac12\ du\ d\theta

V=02π2r2r=0r=23 dθ02π12(23)u32r=0r=23 dθV=\int^{2\pi}_02r^2\Big|^{r=2\sqrt{3}}_{r=0}\ d\theta-\int^{2\pi}_0\frac12\left(\frac23\right)u^\frac32\Big|^{r=2\sqrt{3}}_{r=0}\ d\theta

V=02π2r2r=0r=23 dθ02π13(r2+4)32r=0r=23 dθV=\int^{2\pi}_02r^2\Big|^{r=2\sqrt{3}}_{r=0}\ d\theta-\int^{2\pi}_0\frac13(r^2+4)^\frac32\Big|^{r=2\sqrt{3}}_{r=0}\ d\theta

V=02π2(23)22(0)2 dθ02π13[(23)2+4]3213[(0)2+4]32 dθV=\int^{2\pi}_02\left(2\sqrt{3}\right)^2-2(0)^2\ d\theta-\int^{2\pi}_0\frac13\left[\left(2\sqrt{3}\right)^2+4\right]^\frac32-\frac13\left[(0)^2+4\right]^\frac32\ d\theta

V=02π2(12) dθ02π13(12+4)3213(4)32 dθV=\int^{2\pi}_02(12)\ d\theta-\int^{2\pi}_0\frac13\left(12+4\right)^\frac32-\frac13\left(4\right)^\frac32\ d\theta

V=02π24 dθ02π13(16)3213(4)32 dθV=\int^{2\pi}_024\ d\theta-\int^{2\pi}_0\frac13\left(16\right)^\frac32-\frac13\left(4\right)^\frac32\ d\theta

V=02π24 dθ02π13(64)13(8) dθV=\int^{2\pi}_024\ d\theta-\int^{2\pi}_0\frac13\left(64\right)-\frac13\left(8\right)\ d\theta

V=02π24 dθ02π64383 dθV=\int^{2\pi}_024\ d\theta-\int^{2\pi}_0\frac{64}3-\frac83\ d\theta

V=02π24 dθ02π563 dθV=\int^{2\pi}_024\ d\theta-\int^{2\pi}_0\frac{56}3\ d\theta

Now we’ll put the integrals back together.

V=02π24563 dθV=\int^{2\pi}_024-\frac{56}3\ d\theta

V=02π723563 dθV=\int^{2\pi}_0\frac{72}3-\frac{56}3\ d\theta

V=02π163 dθV=\int^{2\pi}_0\frac{16}3\ d\theta

And then we’ll integrate with respect to θ\theta.

V=163θ02πV=\frac{16}3\theta\Big|^{2\pi}_0

V=163(2π)163(0)V=\frac{16}3(2\pi)-\frac{16}3(0)

V=32π3V=\frac{32\pi}3

This is the volume of the solid enclosed by the curves.

 
Krista King.png
 

Get access to the complete Calculus 3 course