How to find the integral of a vector function

 
 
Integral of a vector function blog post.jpeg
 
 
 

The form of the integral of a vector function

To find the integral of a vector function r(t)=r(t)1i+r(t)2j+r(t)3kr(t)=r(t)_1\bold i+r(t)_2\bold j+r(t)_3\bold k, we simply replace each coefficient with its integral.

In other words, the integral of the vector function is

r(t) dt=ir(t)1 dt+jr(t)2 dt+kr(t)3 dt\int r(t)\ dt=\bold i\int r(t)_1\ dt+\bold j\int r(t)_2\ dt+\bold k\int r(t)_3\ dt

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

If the vector function is given as r(t)=r(t)1,r(t)2,r(t)3r(t)=\langle{r(t)_1,r(t)_2,r(t)_3}\rangle, then its integral is

r(t)=r(t)1 dt,r(t)2 dt,r(t)3 dt\int{r(t)}=\left\langle{\int{r(t)_1}\ dt,\int{r(t)_2}\ dt,\int{r(t)_3}}\ dt\right\rangle

 
 

How to find the integral of a vector function


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

A step-by-step example of how to find the integral of a vector function

Example

Find the integral of the vector function over the interval [0,π][0,\pi].

r(t)=sin(2t)i+2e2tj+4t3kr(t)=\sin{(2t)}\bold i+2e^{2t}\bold j+4t^3\bold k

Remember that we’re only taking the integrals of the coefficients, which means i\bold ij\bold j and k\bold k will be left alone.

0πr(t) dt=cos(2t)20πi+2e2t20πj+4t440πk\int^{\pi}_0{r(t)}\ dt=\frac{-\cos{(2t)}}{2}\Big|^{\pi}_0\bold i+\frac{2e^{2t}}{2}\Big|^{\pi}_0\bold j+\frac{4t^4}{4}\Big|^{\pi}_0\bold k

0πr(t) dt=cos(2t)20πi+e2t0πj+t40πk\int^{\pi}_0{r(t)}\ dt=\frac{-\cos{(2t)}}{2}\Big|^{\pi}_0\bold i+e^{2t}\Big|^{\pi}_0\bold j+t^4\Big|^{\pi}_0\bold k

Integral of a vector function for Calculus 3.jpg

To find the integral of a vector function, we simply replace each coefficient with its integral.

Evaluating over the interval [0,π][0,\pi], we get

0πr(t) dt=[cos(2π)2cos(2(0))2]i+[e2πe2(0)]j+[π404]k\int^{\pi}_0{r(t)}\ dt=\left[\frac{-\cos{(2\pi)}}{2}-\frac{-\cos{(2(0))}}{2}\right]\bold i+\left[e^{2\pi}-e^{2(0)}\right]\bold j+\left[\pi^4-0^4\right]\bold k

0πr(t) dt=[cos(2π)2+cos02]i+(e2π1)j+(π40)k\int^{\pi}_0{r(t)}\ dt=\left[\frac{-\cos{(2\pi)}}{2}+\frac{\cos{0}}{2}\right]\bold i+\left(e^{2\pi}-1\right)\bold j+\left(\pi^4-0\right)\bold k

0πr(t) dt=(12+12)i+(e2π1)j+π4k\int^{\pi}_0{r(t)}\ dt=\left(\frac{-1}{2}+\frac{1}{2}\right)\bold i+(e^{2\pi}-1)\bold j+\pi^4\bold k

0πr(t) dt=0i+(e2π1)j+π4k\int^{\pi}_0{r(t)}\ dt=0\bold i+(e^{2\pi}-1)\bold j+\pi^4\bold k

0πr(t) dt=(e2π1)j+π4k\int^{\pi}_0{r(t)}\ dt=(e^{2\pi}-1)\bold j+\pi^4\bold k

This is the integral of the vector function. We could also write it in the form

0πr(t) dt=0,e2π1,π4\int^{\pi}_0{r(t)}\ dt=\left\langle0,e^{2\pi}-1,\pi^4\right\rangle

 
Krista King.png
 

Get access to the complete Calculus 3 course