Inverse hyperbolic integrals

 
 
Inverse hyperbolic integrals blog post.jpeg
 
 
 

Formulas for integrals with inverse hyperbolic functions

Inverse hyperbolic functions follow standard rules for integration. Remember, an inverse hyperbolic function can be written two ways.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

For example, inverse hyperbolic sine can be written as

arcsinh\text{arcsinh} or as

sinh1\sinh^{-1}

Some people argue that the arcsinh\text{arcsinh} form should be used instead of sinh1\sinh^{-1} because sinh1\sinh^{-1} can be misinterpreted as 1/sinh1/\sinh. Whichever form you prefer, you see both, so you should be able to recognize both and understand that they mean the same thing.

The general rules for the six inverse hyperbolic functions are

arcsinh(ax) dx=xarcsinh(ax)a2x2+1a+C\int{\text{arcsinh}{(ax)}}\ dx=x\text{arcsinh}{(ax)}-\frac{\sqrt{a^2x^2+1}}{a}+C

arccosh(ax) dx=xarccosh(ax)ax+1ax1a+C\int{\text{arccosh}{(ax)}}\ dx=x\text{arccosh}{(ax)}-\frac{\sqrt{ax+1}\sqrt{ax-1}}{a}+C

arctanh(ax) dx=xarctanh(ax)+ln(1a2x2)2a+C\int{\text{arctanh}{(ax)}}\ dx=x\text{arctanh}{(ax)}+\frac{\ln{(1-a^2x^2)}}{2a}+C

arccoth(ax) dx=xarccoth(ax)+ln(a2x21)2a+C\int{\text{arccoth}{(ax)}}\ dx=x\text{arccoth}{(ax)}+\frac{\ln{(a^2x^2-1)}}{2a}+C

arcsech(ax) dx=xarcsech(ax)2aarctan1ax1+ax+C\int{\text{arcsech}{(ax)}}\ dx=x\text{arcsech}{(ax)}-\frac{2}{a}\arctan{\sqrt{\frac{1-ax}{1+ax}}}+C

arccsch(ax) dx=xarccsch(ax)+1aarccoth1a2x2+1+C\int{\text{arccsch}{(ax)}}\ dx=x\text{arccsch}{(ax)}+\frac{1}{a}\text{arccoth}{\sqrt{\frac{1}{a^2x^2}+1}}+C

We also have a few other standard inverse hyperbolic integrals that are based on the standard inverse hyperbolic derivatives. In the following formulas, uu represents a function.

1a2+u2 du=arcsinh(ua)+C\int{\frac{1}{\sqrt{a^2+u^2}}}\ du=\text{arcsinh}{\left(\frac{u}{a}\right)}+C where a>0a>0

1u2a2 du=arccosh(ua)+C\int{\frac{1}{\sqrt{u^2-a^2}}}\ du=\text{arccosh}{\left(\frac{u}{a}\right)}+C where u>a>0u>a>0

1a2u2 du=1aarctanh(ua)+C\int{\frac{1}{a^2-u^2}}\ du=\frac{1}{a}\text{arctanh}{\left(\frac{u}{a}\right)}+C if u2<a2u^2<a^2

1a2u2 du=1aarccoth(ua)+C\int{\frac{1}{a^2-u^2}}\ du=\frac{1}{a}\text{arccoth}{\left(\frac{u}{a}\right)}+C if u2>a2u^2>a^2

1ua2u2 du=1aarcsech(ua)+C\int{\frac{1}{u\sqrt{a^2-u^2}}}\ du=-\frac{1}{a}\text{arcsech}{\left(\frac{u}{a}\right)}+C where 0<u<a0<u<a

1ua2+u2 du=1aarccsch(ua)+C\int{\frac{1}{u\sqrt{a^2+u^2}}}\ du=-\frac{1}{a}\text{arccsch}{\left(\frac{u}{a}\right)}+C where u0u\neq0

 
 

Evaluating an integral that results in an inverse hyperbolic function


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Two examples of evaluating an integral of an inverse hyperbolic function

Example

Evaluate the integral.

7arcsech(5x) dx\int{-7\text{arcsech}{(5x)}}\ dx

We’ll simplify by factoring 7-7 out of the integral.

7arcsech(5x) dx-7\int{\text{arcsech}{(5x)}}\ dx

We’ll use

arcsech(ax) dx=xarcsech(ax)2aarctan1ax1+ax+C\int{\text{arcsech}{(ax)}}\ dx=x\text{arcsech}{(ax)}-\frac{2}{a}\arctan{\sqrt{\frac{1-ax}{1+ax}}}+C

to integrate, and get

7xarcsech(5x)+145arctan15x1+5x+C-7x\text{arcsech}{(5x)}+\frac{14}{5}\arctan{\sqrt{\frac{1-5x}{1+5x}}}+C


Inverse hyperbolic integrals for Calculus 2.jpg

Whichever form you prefer, you see both, so you should be able to recognize both and understand that they mean the same thing.

Example

Evaluate the integral.

19+x2arccsch(4x)+3x2 dx\int{\frac{1}{\sqrt{9+x^2}}}-{\text{arccsch}{(4x)}}+3x^2\ dx

First, break the integral into parts.

19+x2 dx+arccsch(4x) dx+3x2 dx\int{\frac{1}{\sqrt{9+x^2}}}\ dx+\int-{\text{arccsch}{(4x)}}\ dx+\int3x^2\ dx

19+x2 dxarccsch(4x) dx+3x2 dx\int{\frac{1}{\sqrt{9+x^2}}}\ dx-\int{\text{arccsch}{(4x)}}\ dx+3\int x^2\ dx

Now we’ll integrate using the formulas from this section, and we’ll get

arcsinh(x3)xarccsch(4x)14arccoth142x2+1+33x3+C\text{arcsinh}{\left(\frac{x}{3}\right)}-x\text{arccsch}{(4x)}-\frac{1}{4}\text{arccoth}{\sqrt{\frac{1}{4^2x^2}+1}}+\frac{3}{3}x^3+C

arcsinh(x3)xarccsch(4x)14arccoth116x2+16x216x2+x3+C\text{arcsinh}{\left(\frac{x}{3}\right)}-x\text{arccsch}{(4x)}-\frac{1}{4}\text{arccoth}{\sqrt{\frac{1}{16x^2}+\frac{16x^2}{16x^2}}}+x^3+C

arcsinh(x3)xarccsch(4x)14arccoth1+16x216x2+x3+C\text{arcsinh}{\left(\frac{x}{3}\right)}-x\text{arccsch}{(4x)}-\frac{1}{4}\text{arccoth}{\sqrt{\frac{1+16x^2}{16x^2}}}+x^3+C

arcsinh(x3)xarccsch(4x)14arccoth(16x2+14x)+x3+C\text{arcsinh}{\left(\frac{x}{3}\right)}-x\text{arccsch}{(4x)}-\frac{1}{4}\text{arccoth}{\left(\frac{\sqrt{16x^2+1}}{4x}\right)}+x^3+C

 
Krista King.png
 

Get access to the complete Calculus 2 course