Jacobian in three variables to change variables

 
 
Jacobian for three variables blog post.jpeg
 
 
 

Formula for the 3x3 Jacobian matrix in three variables

In the past we’ve converted multivariable functions defined in terms of cartesian coordinates xx and yy into functions defined in terms of polar coordinates rr and θ\theta.

Similarly, given a region defined in uvwuvw-space, we can use a Jacobian transformation to redefine it in xyzxyz-space, or vice versa.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Given three equations x=f(u,v,w)x=f(u,v,w), y=g(u,v,w)y=g(u,v,w), and z=h(u,v,w)z=h(u,v,w), the Jacobian is

 
3x3 jacobian formula
 
 
 

How to calculate the Jacobian for a function in three variables


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Changing a function in x, y, and z into a function in u, v, and w

Example

Find the Jacobian of the transformation.

x=uw2x=uw^2

y=v33wy=v^3-3w

z=2uvwz=\frac{2uv}{w}

Our functions tell us that we have a 3×33\times3 set-up, so we’ll use the formula

(x,y,z)(u,v,w)=xu(yvzwywzv)xv(yuzwywzu)\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=\frac{\partial{x}}{\partial{u}}\left(\frac{\partial{y}}{\partial{v}}\cdot\frac{\partial{z}}{\partial{w}}-\frac{\partial{y}}{\partial{w}}\cdot\frac{\partial{z}}{\partial{v}}\right)-\frac{\partial{x}}{\partial{v}}\left(\frac{\partial{y}}{\partial{u}}\cdot\frac{\partial{z}}{\partial{w}}-\frac{\partial{y}}{\partial{w}}\cdot\frac{\partial{z}}{\partial{u}}\right)

+xw(yuzvyvzu)+\frac{\partial{x}}{\partial{w}}\left(\frac{\partial{y}}{\partial{u}}\cdot\frac{\partial{z}}{\partial{v}}-\frac{\partial{y}}{\partial{v}}\cdot\frac{\partial{z}}{\partial{u}}\right)

We need to start by finding the partial derivatives of xx, yy and zz with respect to uu, vv and ww.

xu=w2\frac{\partial{x}}{\partial{u}}=w^2

xv=0\frac{\partial{x}}{\partial{v}}=0

xw=2uw\frac{\partial{x}}{\partial{w}}=2uw

and

yu=0\frac{\partial{y}}{\partial{u}}=0

yv=3v2\frac{\partial{y}}{\partial{v}}=3v^2

yw=3\frac{\partial{y}}{\partial{w}}=-3

and

zu=2vw\frac{\partial{z}}{\partial{u}}=\frac{2v}{w}

zv=2uw\frac{\partial{z}}{\partial{v}}=\frac{2u}{w}

zw=2uvw2\frac{\partial{z}}{\partial{w}}=-\frac{2uv}{w^2}

Jacobian for three variables for Calculus 3.jpg

given a region defined in uvw-space, we can use a Jacobian transformation to redefine it in xyz-space, or vice versa.

We’ll plug the partial derivatives into our formula and get

(x,y,z)(u,v,w)=w2[3v2(2uvw2)(3)(2uw)]0[0(2uvw2)(3)(2vw)]\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=w^2\left[3v^2\left(-\frac{2uv}{w^2}\right)-(-3)\left(\frac{2u}{w}\right)\right]-0\left[0\left(-\frac{2uv}{w^2}\right)-(-3)\left(\frac{2v}{w}\right)\right]

+2uw[0(2uw)3v2(2vw)]+2uw\left[0\left(\frac{2u}{w}\right)-3v^2\left(\frac{2v}{w}\right)\right]

(x,y,z)(u,v,w)=w2(6uv3w2+6uw)+2uw(6v3w)\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=w^2\left(-\frac{6uv^3}{w^2}+\frac{6u}{w}\right)+2uw\left(-\frac{6v^3}{w}\right)

(x,y,z)(u,v,w)=6uv3w2w2+6uw2w12uv3ww\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=-\frac{6uv^3w^2}{w^2}+\frac{6uw^2}{w}-\frac{12uv^3w}{w}

(x,y,z)(u,v,w)=6uv3+6uw12uv3\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=-6uv^3+6uw-12uv^3

(x,y,z)(u,v,w)=18uv3+6uw\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=-18uv^3+6uw

(x,y,z)(u,v,w)=6uw18uv3\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=6uw-18uv^3

(x,y,z)(u,v,w)=6u(w3v3)\frac{\partial{(x,y,z)}}{\partial{(u,v,w)}}=6u\left(w-3v^3\right)

This is the Jacobian of the transformation.

 
Krista King.png
 

Get access to the complete Calculus 3 course