Using a Jacobian matrix to make a two-variable transformation

 
 
Jacobian for two variables blog post.jpeg
 
 
 

Jacobian transformations for functions in two variables

In the past we’ve converted multivariable functions defined in terms of cartesian coordinates ???x??? and ???y??? into functions defined in terms of polar coordinates ???r??? and ???\theta???.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Similarly, given a region defined in the ???uv???-plane, we can use a Jacobian transformation to redefine it in the ???xy???-plane, or vice versa.

Given two equations ???x=f(u,v)??? and ???y=g(u,v)???, the Jacobian is

???\frac{\partial{(x,y)}}{\partial{(u,v)}}=\left|\begin{matrix}\frac{\partial{x}}{\partial{u}}&\frac{\partial{x}}{\partial{v}}\\ \frac{\partial{y}}{\partial{u}}&\frac{\partial{y}}{\partial{v}}\end{matrix}\right|=\frac{\partial{x}}{\partial{u}}\cdot\frac{\partial{y}}{\partial{v}}-\frac{\partial{x}}{\partial{v}}\cdot\frac{\partial{y}}{\partial{u}}???

 
 

How to use a Jacobian matrix to make a change of variables from one set of two variables to a different set of two variables


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Let’s do another example where we use the Jacobian to make a change of variables

Example

Find the Jacobian of the transformation.

???x=uv???

???y=2u-v^2???

Our functions tell us that we have a ???2\times2??? set-up, so we’ll use the formula

???\frac{\partial{(x,y)}}{\partial{(u,v)}}=\frac{\partial{x}}{\partial{u}}\cdot\frac{\partial{y}}{\partial{v}}-\frac{\partial{x}}{\partial{v}}\cdot\frac{\partial{y}}{\partial{u}}???

Jacobian for two variables for Calculus 3.jpg

given a region defined in the uv-plane, we can use a Jacobian transformation to redefine it in the xy-plane, or vice versa.

We need to start by finding the partial derivatives of ???x??? and ???y??? with respect to both ???u??? and ???v???.

???\frac{\partial{x}}{\partial{u}}=v???

???\frac{\partial{x}}{\partial{v}}=u???

and

???\frac{\partial{y}}{\partial{u}}=2???

???\frac{\partial{y}}{\partial{v}}=-2v???

We’ll plug the partial derivatives into our formula and get

???\frac{\partial{(x,y)}}{\partial{(u,v)}}=(v)(-2v)-(u)(2)???

???\frac{\partial{(x,y)}}{\partial{(u,v)}}=-2v^2-2u???

This is the Jacobian of the transformation.

 
Krista King.png
 

Get access to the complete Calculus 3 course