We’ll use the value we just found, x1=−1/3 in our next approximation, where we’ll solve for x2.
x2=x1−2x1−1(x1)2−x1
x2=−31−2(−31)−1(−31)2−(−31)
x2=−31−−32−191+31
x2=−31−−32−3391+93
x2=−31−−3594
x2=−31+3594
x2=−31+94(53)
x2=−31+34(51)
x2=−31+154
x2=−155+154
x2=−151≈−0.0667
We’ll use x2=−1/15 to solve for x3.
x3=x2−2x2−1(x2)2−x2
x3=−151−2(−151)−1(−151)2−(−151)
x3=−151−−152−12251+151
x3=−151−−152−15152251+22515
x3=−151−−151722516
x3=−151+151722516
x3=−151+22516(1715)
x3=−151+1516(171)
x3=−151+25516
x3=−25517+25516
x3=−2551≈−0.0039
We’ll use x3=−1/255 to solve for x4.
x4=x3−2x3−1(x3)2−x3
x4=−2551−2(−2551)−1(−2551)2−(−2551)
x4=−2551−−2552−125521+2551
x4=−2551−−2552−25525525521+2552255
x4=−2551−−2552572552256
x4=−2551+2552572552256
x4=−2551+2552256(257255)
x4=−2551+255256(2571)
x4=−2551+255⋅257256
x4=−255⋅257257+255⋅257256
x4=−255⋅2571
x4=−65,5351≈−0.0000
The solution is only getting smaller, which means that the next approximation will also be all zeros to the first four decimal places. Therefore, the approximation of the root of the function to four decimal places is 0.