The root test for convergence

 
 
Root test blog post.jpeg
 
 
 

When the root test indicates absolute convergence, divergence, or is inconclusive

The root test for convergence lets us determine the convergence or divergence of a series ana_n using the limit

L=limnannL=\lim_{n\to\infty}\sqrt[n]{|a_n|}

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

The convergence or divergence of the series depends on the value of LL.

the series converges absolutely if L<1L<1.

the series diverges if L>1L>1 or if LL is infinite.

the test is inconclusive if L=1L=1.

The root test is used most often when our series includes something raised to the nnth power.

 
 

The root test lets us determine absolute convergence


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Using the root test to say whether or not the series converges

Example

Use the root test to say whether the series converges or diverges.

n=16n(n+2)n\sum^{\infty}_{n=1}\frac{6^n}{(n+2)^n}

To use the root test, we need to solve for the limit

L=limnannL=\lim_{n\to\infty\sqrt[n]{|a_n|}}

and then evaluate the value of LL.

L=limn6n(n+2)nnL=\lim_{n\to\infty}\sqrt[n]{\left|\frac{6^n}{(n+2)^n}\right|}

Root test for Calculus 2.jpg

The convergence or divergence of the series depends on the value of L.

We can drop the absolute value bars since all of our terms will be positive.

L=limn6n(n+2)nnL=\lim_{n\to\infty}\sqrt[n]{\frac{6^n}{(n+2)^n}}

L=limn[6n(n+2)n]1nL=\lim_{n\to\infty}\left[\frac{6^n}{(n+2)^n}\right]^{\frac{1}{n}}

L=limn[(6n+2)n]1nL=\lim_{n\to\infty}\left[\left(\frac{6}{n+2}\right)^n\right]^{\frac{1}{n}}

L=limn(6n+2)nnL=\lim_{n\to\infty}\left(\frac{6}{n+2}\right)^\frac{n}{n}

L=limn6n+2L=\lim_{n\to\infty}\frac{6}{n+2}

L=6+2L=\frac{6}{\infty+2}

L=6L=\frac{6}{\infty}

L=0L=0

Since L<1L<1, we can say that the original series ana_n converges absolutely.

 
Krista King.png
 

Get access to the complete Calculus 2 course