Using the scalar triple product to prove that vectors are coplanar

 
 
Scalar triple product to prove vectors are coplanar blog post.jpeg
 
 
 

Formula for the scalar triple product

The scalar triple product a(b×c)|a\cdot(b\times c)| of three vectors aa1,a2,a3a\langle{a_1},a_2,a_3\rangle, bb1,b2,b3b\langle{b_1},b_2,b_3\rangle and cc1,c2,c3c\langle{c_1},c_2,c_3\rangle will be equal to 00 when the vectors are coplanar, which means that the vectors all lie in the same plane.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

aa, bb, and cc are coplanar if a(b×c)=0|a\cdot(b\times c)|=0

b×cb\times c is the cross product of bb and cc, and we’ll find it using the 3×33\times 3 matrix

iamp;jamp;kb1amp;b2amp;b3c1amp;c2amp;c3=ib2amp;b3c2amp;c3jb1amp;b3c1amp;c3+kb1amp;b2c1amp;c2\begin{vmatrix}\bold i&\bold j&\bold k\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix}=\bold i\begin{vmatrix}b_2&b_3\\c_2&c_3\end{vmatrix}-\bold j\begin{vmatrix}b_1&b_3\\c_1&c_3\end{vmatrix}+\bold k\begin{vmatrix}b_1&b_2\\c_1&c_2\end{vmatrix}

=i(b2c3b3c2)j(b1c3b3c1)+k(b1c2b2c1)=\bold i(b_2c_3-b_3c_2)-\bold j(b_1c_3-b_3c_1)+\bold k(b_1c_2-b_2c_1)

We’ll convert the result of the cross product into standard vector form, and then take the dot product of aa1,a2,a3a\langle{a_1},a_2,a_3\rangle and the vector result of b×cb\times c.

a(b×c)|a\cdot(b\times c)|

The final answer is the scalar triple product. If it’s equal to 00, then we’ve proven that the vectors are coplanar.

 
 

How to use the scalar triple product to verify that three vectors are coplanar (that they lie in the same plane)


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Proving that the vectors are coplanar

Example

Prove that the vectors are coplanar.

a3,3,3a\langle3,3,-3\rangle

b1,0,2b\langle1,0,-2\rangle

c2,3,1c\langle2,3,-1\rangle

We’ll use the scalar triple product, and we’ll start by calculating the cross product of bb and cc, b×cb\times c.

b×c=iamp;jamp;k1amp;0amp;22amp;3amp;1b\times c=\begin{vmatrix}\bold i&\bold j&\bold k\\1&0&-2\\2&3&-1\end{vmatrix}

b×c=i0amp;23amp;1j1amp;22amp;1+k1amp;02amp;3b\times c=\bold i\begin{vmatrix}0&-2\\3&-1\end{vmatrix}-\bold j\begin{vmatrix}1&-2\\2&-1\end{vmatrix}+\bold k\begin{vmatrix}1&0\\2&3\end{vmatrix}

b×c=i[(0)(1)(2)(3)]j[(1)(1)(2)(2)]+k[(1)(3)(0)(2)]b\times c=\bold i[(0)(-1)-(-2)(3)]-\bold j[(1)(-1)-(-2)(2)]+\bold k[(1)(3)-(0)(2)]

b×c=i(0+6)j(1+4)+k(30)b\times c=\bold i(0+6)-\bold j(-1+4)+\bold k(3-0)

b×c=6i3j+3kb\times c=6\bold i-3\bold j+3\bold k

b×c=6,3,3b\times c=\langle6,-3,3\rangle

Scalar triple product to prove vectors are coplanar for Calculus 3.jpg

The final answer is the scalar triple product. If it’s equal to 0, then we’ve proven that the vectors are coplanar.

Next we’ll take the dot product of a3,3,3a\langle3,3,-3\rangle and b×c=6,3,3b\times c=\langle6,-3,3\rangle.

a(b×c)=(3)(6)+(3)(3)+(3)(3)|a\cdot(b\times c)|=(3)(6)+(3)(-3)+(-3)(3)

a(b×c)=1899|a\cdot(b\times c)|=18-9-9

a(b×c)=0|a\cdot(b\times c)|=0

Since the scalar triple product of the vectors a3,3,3a\langle3,3,-3\rangle, b1,0,2b\langle1,0,-2\rangle and c2,3,1c\langle2,3,-1\rangle is equal to 00,

a(b×c)=0|a\cdot(b\times c)|=0

the vectors aa, bb, and cc are coplanar.

 
Krista King.png
 

Get access to the complete Calculus 3 course