Evaluating double integrals as iterated integrals

 
 
Iterated and double integrals blog post.jpeg
 
 
 

To evaluate a double integral, turn it into an iterated integral

A double integral has no explicitly defined limits of integration. Instead, the interval is some region RR, like

Rf(x,y) dA\int\int_Rf(x,y)\ dA

An iterated integral is one in which limits of integration have been clearly defined for each variable, like

0402x+y2+2 dx dy\int_0^4\int_0^2x+y^2+2\ dx\ dy

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Whenever we’re given a double integral, we want to turn it into an iterated integral, because with iterated integrals, we can easily evaluate one integral at a time, like we would in single variable calculus.

When we evaluate iterated integrals, we always work from the inside out. In the iterated integral above, because dxdx is on the inside and dydy is on the outside, that means that the limits of integration [0,2][0,2] on the inside integral correspond to xx and the limits of integration [0,4][0,4] on the outside integral correspond to yy.

Working from the inside out, we’ll integrate first with respect to xx, treating yy as a constant, and we’ll evaluate over the xx-interval [0,2][0,2]. Then we’ll integrate with respect to yy and evaluate over the yy-interval [0,4][0,4].

 
 

How to solve a double integral by converting it into an iterated integral


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Evaluating an iterated integral

Example

Evaluate the iterated integral.

0213x2y3xey dy dx\int^2_0\int^3_1x^2y^3-xe^y\ dy\ dx

Since dydy is on the inside, we have to integrate with respect to yy first. When we integrate with respect to yy, we treat xx as a constant, similarly to the way we hold one variable constant when we take a partial derivative with respect to the other variable.

0213x2y3xey dy dx\int^2_0\int^3_1x^2y^3-xe^y\ dy\ dx

02x2(14y4)x(ey)y=1y=3 dx\int_0^2x^2\left(\frac14 y^4\right)-x\left(e^y\right)\bigg|^{y=3}_{y=1}\ dx

02x2y44xeyy=1y=3 dx\int^2_0\frac{x^2y^4}{4}-xe^y\bigg|^{y=3}_{y=1}\ dx

Notice how we’ve indicated that we’re evaluating over the interval y=1y=1 to y=3y=3. It’s helpful to designate the variable that the interval applies to so that you remember to plug in for the right variable.

Now we can evaluate the interval. Since we took the integral with respect to yy, we’re evaluating the integral with respect to yy.

02[x2(3)44xe3][x2(1)44xe1] dx\int^2_0\left[\frac{x^2(3)^4}{4}-xe^3\right]-\left[\frac{x^2(1)^4}{4}-xe^1\right]\ dx

02(81x24xe3)(x24xe) dx\int^2_0\left(\frac{81x^2}{4}-xe^3\right)-\left(\frac{x^2}{4}-xe\right)\ dx

0281x24xe3x24+xe dx\int^2_0\frac{81x^2}{4}-xe^3-\frac{x^2}{4}+xe\ dx

0280x24xe3+xe dx\int^2_0\frac{80x^2}{4}-xe^3+xe\ dx

0220x2xe3+xe dx\int^2_020x^2-xe^3+xe\ dx

Now we’ll take the integral with respect to xx.

20x3312x2e3+12x2e02\frac{20x^3}{3}-\frac12 x^2e^3+\frac12 x^2e\bigg|^2_0

Now, we can evaluate the interval. Remember we took the integral with respect to xx so we are evaluating the the integral also with respect to xx.

20(2)3312(2)2e3+12(2)2e[20(0)3312(0)2e3+12(0)2e]\frac{20(2)^3}{3}-\frac12 (2)^2e^3+\frac12 (2)^2e-\left[\frac{20(0)^3}{3}-\frac12 (0)^2e^3+\frac12 (0)^2e\right]

20(8)312(4)e3+12(4)e(00+0)\frac{20(8)}{3}-\frac12 (4)e^3+\frac12 (4)e-\left(0-0+0\right)

16032e3+2e\frac{160}{3}-2e^3+2e

This is the value of the iterated integral, which means it’s the volume under the function f(x,y)=x2y3xeyf(x,y)=x^2y^3-xe^y over the region R=[0,2]×[1,3]R=[0,2]\times[1,3].


Now let’s try an example with a double integral, where the intervals for xx and yy aren’t already incorporated into the integral.


Iterated and double integrals for Calculus 3.jpg

When You’re given a double integral, You want to turn it into an iterated integral, because with iterated integrals, You can easily evaluate one integral at a time.

Example

Evaluate the double integral.

Rysin(3x)y3cosx dA\int\int_Ry\sin{(3x)}-y^3\cos{x}\ dA

R={(x,y)0xπ2,1y2}R=\left\{(x,y)\big|0\le{x}\le\frac{\pi}{2},-1\le{y}\le2\right\}

The question is asking us to evaluate a double integral, and they’re giving us RR. The values in RR correspond to the xx and yy intervals for our double integral, so we can go ahead and insert this information into the double integral to turn it into an iterated integral.

Rysin(3x)y3cosx dA\int\int_Ry\sin{(3x)}-y^3\cos{x}\ dA

0π212ysin(3x)y3cosx dy dx\int_0^\frac{\pi}{2}\int_{-1}^2y\sin{(3x)}-y^3\cos{x}\ dy \ dx

It doesn’t matter if we put dxdx on the inside and dydy on the outside, or vice versa. But we need to make sure that the limits of integration on each integral match the order of dxdx and dydy. Since we put dydy on the inside, the limits of integration for yy have to get attached to the inside integral. And since dxdx is on the outside, we put the limits of integration for xx on the outside integral.

Since dydy is on the inside, and we always work our way inside out, we’ll integrate first with respect to yy, treating xx as a constant.

0π212y2sin(3x)14y4cosxy=1y=2 dx\int_0^\frac{\pi}{2}\frac12 y^2\sin{(3x)}-\frac14 y^4\cos{x}\bigg|_{y=-1}^{y=2}\ dx

Now we’ll evaluate over the interval for yy.

0π212(2)2sin(3x)14(2)4cosx[12(1)2sin(3x)14(1)4cosx] dx\int_0^\frac{\pi}{2}\frac12 (2)^2\sin{(3x)}-\frac14 (2)^4\cos{x}-\left[\frac12 (-1)^2\sin{(3x)}-\frac14 (-1)^4\cos{x}\right]\ dx

0π212(4)sin(3x)14(16)cosx[12(1)sin(3x)14(1)cosx] dx\int_0^\frac{\pi}{2}\frac12 (4)\sin{(3x)}-\frac14 (16)\cos{x}-\left[\frac12 (1)\sin{(3x)}-\frac14 (1)\cos{x}\right]\ dx

0π22sin(3x)4cosx12sin(3x)+14cosx dx\int_0^\frac{\pi}{2}2\sin{(3x)}-4\cos{x}-\frac12 \sin{(3x)}+\frac14 \cos{x}\ dx

0π232sin(3x)154cosx dx\int_0^\frac{\pi}{2}\frac32\sin{(3x)}-\frac{15}{4}\cos{x}\ dx

Next we’ll integrate with respect to xx, then evaluate over the xx-interval.

32(13)cos(3x)154sinx0π2-\frac32\left(\frac13\right)\cos{(3x)}-\frac{15}{4}\sin{x}\bigg|_0^\frac{\pi}{2}

12cos(3x)154sinx0π2-\frac12\cos{(3x)}-\frac{15}{4}\sin{x}\bigg|_0^\frac{\pi}{2}

12cos(3π2)154sinπ2[12cos(30)154sin0]-\frac12\cos{\left(3\cdot\frac{\pi}{2}\right)}-\frac{15}{4}\sin{\frac{\pi}{2}}-\left[-\frac12\cos{(3\cdot0)}-\frac{15}{4}\sin{0}\right]

12cos3π2154sinπ2+12cos0+154sin0-\frac12\cos{\frac{3\pi}{2}}-\frac{15}{4}\sin{\frac{\pi}{2}}+\frac12\cos{0}+\frac{15}{4}\sin{0}

12(0)154(1)+12cos0+154sin0-\frac12(0)-\frac{15}{4}(1)+\frac12\cos{0}+\frac{15}{4}\sin{0}

0154+12(1)+154(0)-0-\frac{15}{4}+\frac12(1)+\frac{15}{4}(0)

0154+12+00-\frac{15}{4}+\frac12+0

154+24-\frac{15}{4}+\frac24

134-\frac{13}{4}

The value of the double integral is 13/4-13/4, which means the volume under the function f(x,y)=ysin(3x)y3cosxf(x,y)=y\sin{(3x)}-y^3\cos{x} over the region R=[0,π2]×[1,2]R=\left[0,\frac{\pi}{2}\right]\times\left[-1,2\right] is 13/4-13/4.

 
Krista King.png
 

Get access to the complete Calculus 3 course