How to find the surface area of revolution of a polar curve

 
 
Surface area of revolution of a polar curve blog post.jpeg
 
 
 

The formulas we’ll use to find the surface area of revolution of a polar curve

We can find the surface area of the object created when we rotate a polar curve around either the xx-axis or the yy-axis using the formulas

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 
 
table of formulas for finding the surface area of revolution of a polar curve
 

We can solve for xx and yy as needed using the conversion formulas

x=rcosθx=r\cos{\theta}

y=rsinθy=r\sin{\theta}

 
 

How to find the surface area of revolution when we revolve a polar curve around a specific axis, over a specific interval


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Surface area of revolution of a polar curve when we revolve around the y-axis

Example

Find the surface area of revolution of the polar curve over the interval 0θπ0\le\theta\le\pi, rotated around the yy-axis.

r=5cosθr=5\cos{\theta}

Before we can plug into the formula, we need to find xx and dr/dθdr/d\theta.

Since x=rcosθx=r\cos{\theta}, we get

x=5cosθcosθx=5\cos{\theta}\cos{\theta}

x=5cos2θx=5\cos^2{\theta}

To find dr/dθdr/d\theta, we’ll take the derivative of the given polar equation.

r=5cosθr=5\cos{\theta}

drdθ=5sinθ\frac{dr}{d\theta}=-5\sin{\theta}

We’ll plug everything into the formula for the surface area of revolution about the yy-axis.

Sy=αβ2πxr2+(drdθ)2 dθS_y=\int^{\beta}_{\alpha}2\pi{x}\sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2}\ d\theta

Sy=0π2π(5cos2θ)(5cosθ)2+(5sinθ)2 dθS_y=\int^{\pi}_02\pi\left(5\cos^2{\theta}\right)\sqrt{\left(5\cos{\theta}\right)^2+\left(-5\sin{\theta}\right)^2}\ d\theta

Sy=10π0πcos2θ25cos2θ+25sin2θ dθS_y=10\pi\int^{\pi}_0\cos^2{\theta}\sqrt{25\cos^2{\theta}+25\sin^2{\theta}}\ d\theta

Sy=10π0πcos2θ25(cos2θ+sin2θ) dθS_y=10\pi\int^{\pi}_0\cos^2{\theta}\sqrt{25\left(\cos^2{\theta}+\sin^2{\theta}\right)}\ d\theta

Surface area of revolution of a polar curve for Calculus 2.jpg

We can find the surface area of the object created when we rotate a polar curve around either the x-axis or the y-axis

Since cos2θ+sin2θ=1\cos^2{\theta}+\sin^2{\theta}=1,

Sy=50π0πcos2θ1 dθS_y=50\pi\int^{\pi}_0\cos^2{\theta}\sqrt{1}\ d\theta

Sy=50π0πcos2θ dθS_y=50\pi\int^{\pi}_0\cos^2{\theta}\ d\theta

Since cos2θ=12[1+cos(2θ)]\cos^2{\theta}=\frac12\left[1+\cos{(2\theta)}\right],

Sy=50π0π12[1+cos(2θ)] dθS_y=50\pi\int^{\pi}_0\frac12\left[1+\cos{(2\theta)}\right]\ d\theta

Sy=50π0π12+12cos(2θ) dθS_y=50\pi\int^{\pi}_0\frac12+\frac12\cos{(2\theta)}\ d\theta

Sy=25π0π1+cos(2θ) dθS_y=25\pi\int^{\pi}_01+\cos{(2\theta)}\ d\theta

Sy=25π[θ+12sin(2θ)]0πS_y=25\pi\left[\theta+\frac{1}{2}\sin{(2\theta)}\right]\bigg|^{\pi}_0

Sy=25πθ+25π2sin(2θ)0πS_y=25\pi\theta+\frac{25\pi}{2}\sin{(2\theta)}\bigg|^{\pi}_0

Sy=25π(π)+25π2sin(2π)[25π(0)+25π2sin(2(0))]S_y=25\pi(\pi)+\frac{25\pi}{2}\sin{(2\pi)}-\left[25\pi(0)+\frac{25\pi}{2}\sin{(2(0))}\right]

Sy=25π2+25π2(0)25π(0)25π2(0)S_y=25\pi^2+\frac{25\pi}{2}(0)-25\pi(0)-\frac{25\pi}{2}(0)

Sy=25π2S_y=25\pi^2

 
Krista King.png
 

Get access to the complete Calculus 2 course