Finding surface area of revolution of a parametric curve around a vertical axis

 
 
Surface area of revolution of a parametric curve, vertical axis blog post.jpeg
 
 
 

The formula for surface area of revolution of a parametric curve

The surface area of the solid created by revolving a parametric curve around the yy-axis is given by

Sx=ab2πx[f(t)]2+[g(t)]2 dtS_x=\int^b_a 2\pi{x}\sqrt{\left[f'(t)\right]^2+\left[g'(t)\right]^2}\ dt

where the curve is defined over the interval [a,b][a,b],

where f(t)f'(t) is the derivative of the curve x=f(t)x=f(t)

where g(t)g'(t) is the derivative of the curve y=g(t)y=g(t)

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 
 
 

How to find surface area of revolution with a parametric curve around a vertical axis of revolution


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding surface area of the parametric curve rotated around the y-axis

Example

Find the surface area of revolution of the solid created when the parametric curve is rotated around the given axis over the given interval.

x=2t2x=2t^2

y=2t3y=2t^3

for 0t30\le{t}\le3, rotated around the yy-axis

We’ll call the parametric equations

f(t)=2t2f(t)=2t^2

g(t)=2t3g(t)=2t^3

The limits of integration are defined in the problem, but we need to find both derivatives before we can plug into the formula.

f(t)=4tf'(t)=4t

g(t)=6t2g'(t)=6t^2

Now we’ll plug into the formula for the surface area of revolution.

Sy=032π(2t2)(4t)2+(6t2)2 dtS_y=\int^3_02\pi\left(2t^2\right)\sqrt{\left(4t\right)^2+\left(6t^2\right)^2}\ dt

Sy=034πt216t2+36t4 dtS_y=\int^3_04\pi{t^2}\sqrt{16t^2+36t^4}\ dt

Sy=034πt24t2(4+9t2) dtS_y=\int^3_04\pi{t^2}\sqrt{4t^2\left(4+9t^2\right)}\ dt

Sy=038πt34+9t2 dtS_y=\int^3_0 8\pi{t^3}\sqrt{4+9t^2}\ dt

Sy=8π03t34+9t2 dtS_y=8\pi\int^3_0t^3\sqrt{4+9t^2}\ dt

Surface area of revolution of a parametric curve, vertical axis for Calculus 2.jpg

We use different formulas to find the surface area of revolution of a parametric curve, depending on whether the axis of revolution is horizontal or vertical.

We’ll use u-substitution, letting

u=4+9t2u=4+9t^2

9t2=u49t^2=u-4

t2=u49t^2=\frac{u-4}{9}

du=18t dtdu=18t\ dt

dt=du18tdt=\frac{du}{18t}

We’ll make the substitution.

Sy=8πt=0t=3t3u du18tS_y=8\pi\int^{t=3}_{t=0}t^3\sqrt{u}\ \frac{du}{18t}

Sy=8π18t=0t=3t2u duS_y=\frac{8\pi}{18}\int^{t=3}_{t=0}t^2\sqrt{u}\ du

Sy=8π18t=0t=3u49u duS_y=\frac{8\pi}{18}\int^{t=3}_{t=0}\frac{u-4}{9}\sqrt{u}\ du

Sy=8π18t=0t=3(u949)u12 duS_y=\frac{8\pi}{18}\int^{t=3}_{t=0}\left(\frac{u}{9}-\frac49\right)u^{\frac12}\ du

Sy=8π18t=0t=3u3294u129 duS_y=\frac{8\pi}{18}\int^{t=3}_{t=0}\frac{u^{\frac32}}{9}-\frac{4u^{\frac12}}{9}\ du

Sy=8π162t=0t=3u324u12 duS_y=\frac{8\pi}{162}\int^{t=3}_{t=0}u^{\frac32}-4u^{\frac12}\ du

Sy=4π81(25u5283u32)t=0t=3S_y=\frac{4\pi}{81}\left(\frac25u^{\frac52}-\frac83u^{\frac32}\right)\bigg|^{t=3}_{t=0}

Back-substituting for uu, we get

Sy=4π81[25(4+9t2)5283(4+9t2)32]03S_y=\frac{4\pi}{81}\left[\frac25\left(4+9t^2\right)^{\frac52}-\frac83\left(4+9t^2\right)^{\frac32}\right]\bigg|^3_0

Evaluate over the interval.

Sy=4π81[25(4+9(3)2)5283(4+9(3)2)32]4π81[25(4+9(0)2)5283(4+9(0)2)32]S_y=\frac{4\pi}{81}\left[\frac25\left(4+9(3)^2\right)^{\frac52}-\frac83\left(4+9(3)^2\right)^{\frac32}\right]-\frac{4\pi}{81}\left[\frac25\left(4+9(0)^2\right)^{\frac52}-\frac83\left(4+9(0)^2\right)^{\frac32}\right]

Sy=4π81[25(4+81)5283(4+81)32]4π81[25(4+0)5283(4+0)32]S_y=\frac{4\pi}{81}\left[\frac25\left(4+81\right)^{\frac52}-\frac83\left(4+81\right)^{\frac32}\right]-\frac{4\pi}{81}\left[\frac25\left(4+0\right)^{\frac52}-\frac83\left(4+0\right)^{\frac32}\right]

Sy=4π81[25(85)5283(85)3225(4)52+83(4)32]S_y=\frac{4\pi}{81}\left[\frac25\left(85\right)^{\frac52}-\frac83\left(85\right)^{\frac32}-\frac25\left(4\right)^{\frac52}+\frac83\left(4\right)^{\frac32}\right]

Sy=4π81[25[(85)5]1283[(85)3]1225[(4)12]5+83[(4)12]3]S_y=\frac{4\pi}{81}\left[\frac25\left[\left(85\right)^5\right]^\frac12-\frac83\left[\left(85\right)^3\right]^\frac12-\frac25\left[\left(4\right)^{\frac12}\right]^5+\frac83\left[\left(4\right)^{\frac12}\right]^3\right]

Sy=4π81[25[85(85)4]1283[85(85)2]1225(2)5+83(2)3]S_y=\frac{4\pi}{81}\left[\frac25\left[85\left(85\right)^4\right]^\frac12-\frac83\left[85\left(85\right)^2\right]^\frac12-\frac25(2)^5+\frac83(2)^3\right]

Sy=4π81[25[(85)285]83[8585]25(32)+83(8)]S_y=\frac{4\pi}{81}\left[\frac25\left[\left(85\right)^2\sqrt{85}\right]-\frac83\left[85\sqrt{85}\right]-\frac25(32)+\frac83(8)\right]

Sy=4π81[2(85)2855680853645+643]S_y=\frac{4\pi}{81}\left[\frac{2\left(85\right)^2\sqrt{85}}{5}-\frac{680\sqrt{85}}{3}-\frac{64}{5}+\frac{64}{3}\right]

Sy=4π81[2551717855680853645+643]S_y=\frac{4\pi}{81}\left[\frac{2\cdot5\cdot5\cdot17\cdot17\cdot\sqrt{85}}{5}-\frac{680\sqrt{85}}{3}-\frac{64}{5}+\frac{64}{3}\right]

Sy=4π81[2,89085680853645+643]S_y=\frac{4\pi}{81}\left[2,890\sqrt{85}-\frac{680\sqrt{85}}{3}-\frac{64}{5}+\frac{64}{3}\right]

Sy=4π81[2,89085645+64680853]S_y=\frac{4\pi}{81}\left[2,890\sqrt{85}-\frac{64}{5}+\frac{64-680\sqrt{85}}{3}\right]

Find a common denominator.

Sy=4π81[43,350851519215+3203,4008515]S_y=\frac{4\pi}{81}\left[\frac{43,350\sqrt{85}}{15}-\frac{192}{15}+\frac{320-3,400\sqrt{85}}{15}\right]

Sy=4π81(43,350853,40085192+32015)S_y=\frac{4\pi}{81}\left(\frac{43,350\sqrt{85}-3,400\sqrt{85}-192+320}{15}\right)

Sy=4π81(39,95085+12815)S_y=\frac{4\pi}{81}\left(\frac{39,950\sqrt{85}+128}{15}\right)

 
Krista King.png
 

Get access to the complete Calculus 2 course