Finding the tangent line to the polar curve

 
 
Tangent line to the polar curve blog post.jpeg
 
 
 

Steps for finding the tangent line to a polar curve at a particular point

We’ll find the equation of the tangent line to a polar curve in much the same way that we find the tangent line to a cartesian curve.

We’ll follow these steps:

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

1. Find the slope of the tangent line mm, using the formula

m=dydx=drdθsinθ+rcosθdrdθcosθrsinθm = \frac{dy}{dx} = \frac {\frac{dr}{d\theta}\sin{\theta}+r\cos{\theta}} {\frac{dr}{d\theta}\cos{\theta}-r\sin{\theta}}

remembering to plug the value of θ\theta at the tangent point into dy/dxdy/dx to get a real-number value for the slope mm.

2. Find x1x_1 and x2x2 by plugging the value of θ\theta at the tangent point into the conversion formulas

x=rcosθx=r\cos{\theta}

y=rsinθy=r\sin{\theta}

3. Plug the slope mm and the point (x1,y1)(x_1,y_1) into the point-slope formula for the equation of a line

yy1=m(xx1)y-y_1=m(x-x_1)

 
 

How to find the equation of the tangent line


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Building the tangent line equation step-by-step

Example

Find the tangent line to the polar curve at the given point.

r=1+2cosθr=1+2\cos{\theta}

at θ=π4\theta=\frac{\pi}{4}

We’ll start by calculating dr/dθdr/d\theta, the derivative of the given polar equation, so that we can plug it into the formula for the slope of the tangent line.

r=1+2cosθr=1+2\cos{\theta}

drdθ=2sinθ\frac{dr}{d\theta}=-2\sin{\theta}

Plugging dr/dθdr/d\theta and the given polar equation r=1+2cosθr=1+2\cos{\theta} into the formula for dy/dxdy/dx, we get

m=dydx=(2sinθ)sinθ+(1+2cosθ)cosθ(2sinθ)cosθ(1+2cosθ)sinθm=\frac{dy}{dx}=\frac{(-2\sin{\theta})\sin{\theta}+(1+2\cos{\theta})\cos{\theta}}{(-2\sin{\theta})\cos{\theta}-(1+2\cos{\theta})\sin{\theta}}

m=dydx=2sin2θ+cosθ+2cos2θ2sinθcosθsinθ2sinθcosθm=\frac{dy}{dx}=\frac{-2\sin^2{\theta}+\cos{\theta}+2\cos^2{\theta}}{-2\sin{\theta}\cos{\theta}-\sin{\theta}-2\sin{\theta}\cos{\theta}}

m=dydx=2sin2θ+cosθ+2cos2θ4sinθcosθsinθm=\frac{dy}{dx}=\frac{-2\sin^2{\theta}+\cos{\theta}+2\cos^2{\theta}}{-4\sin{\theta}\cos{\theta}-\sin{\theta}}

Plugging the value of θ=π/4\theta=\pi/4 into the slope equation, we’ll get a real-number value for the slope mm.

m=dydx=2sin2π4+cosπ4+2cos2π44sinπ4cosπ4sinπ4m=\frac{dy}{dx}=\frac{-2\sin^2{\frac{\pi}{4}}+\cos{\frac{\pi}{4}}+2\cos^2{\frac{\pi}{4}}}{-4\sin{\frac{\pi}{4}}\cos{\frac{\pi}{4}}-\sin{\frac{\pi}{4}}}

m=dydx=2(22)2+22+2(22)24222222m=\frac{dy}{dx}=\frac{-2\left(\frac{\sqrt{2}}{2}\right)^2+\frac{\sqrt{2}}{2}+2\left(\frac{\sqrt{2}}{2}\right)^2}{-4\cdot\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}}

m=dydx=2(24)+22+2(24)42422m=\frac{dy}{dx}=\frac{-2\left(\frac{2}{4}\right)+\frac{\sqrt{2}}{2}+2\left(\frac{2}{4}\right)}{-4\cdot\frac{2}{4}-\frac{\sqrt{2}}{2}}

m=dydx=1+22+1222m=\frac{dy}{dx}=\frac{-1+\frac{\sqrt{2}}{2}+1}{-2-\frac{\sqrt{2}}{2}}

m=dydx=224222m=\frac{dy}{dx}=\frac{\frac{\sqrt{2}}{2}}{-\frac{4}{2}-\frac{\sqrt{2}}{2}}

m=dydx=22422m=\frac{dy}{dx}=\frac{\frac{\sqrt{2}}{2}}{\frac{-4-\sqrt{2}}{2}}

m=dydx=22(242)m=\frac{dy}{dx}=\frac{\sqrt{2}}{2}\left(\frac{2}{-4-\sqrt{2}}\right)

m=dydx=242m=\frac{dy}{dx}=\frac{\sqrt{2}}{-4-\sqrt{2}}

If we want to get rid of the square root in the denominator, we can multiply by the conjugate.

m=dydx=242(4+24+2)m=\frac{dy}{dx}=\frac{\sqrt{2}}{-4-\sqrt{2}}\left(\frac{-4+\sqrt{2}}{-4+\sqrt{2}}\right)

m=dydx=42+2162m=\frac{dy}{dx}=\frac{-4\sqrt{2}+2}{16-2}

m=dydx=42+214m=\frac{dy}{dx}=\frac{-4\sqrt{2}+2}{14}

m=dydx=22+17m=\frac{dy}{dx}=\frac{-2\sqrt{2}+1}{7}

m=dydx=1227m=\frac{dy}{dx}=\frac{1-2\sqrt{2}}{7}

Tangent line to the polar curve for Calculus 2.jpg

We’ll find the equation of the tangent line to a polar curve in much the same way that we find the tangent line to a cartesian curve.

Now we want to find x1x_1 and y1y_1 by plugging the value of θ\theta at the tangent point and the given polar equation r=1+2cosθr=1+2\cos{\theta} into the conversion formulas

x=rcosθx=r\cos{\theta}

x1=(1+2cosπ4)cosπ4x_1=\left(1+2\cos{\frac{\pi}{4}}\right)\cos{\frac{\pi}{4}}

x1=[1+2(22)]22x_1=\left[1+2\left(\frac{\sqrt{2}}{2}\right)\right]\frac{\sqrt{2}}{2}

x1=(1+2)22x_1=\left(1+\sqrt{2}\right)\frac{\sqrt{2}}{2}

x1=2+22x_1=\frac{\sqrt{2}+2}{2}

x1=2+22x_1=\frac{2+\sqrt{2}}{2}

and

y=rsinθy=r\sin{\theta}

y1=(1+2cosπ4)sinπ4y_1=\left(1+2\cos{\frac{\pi}{4}}\right)\sin{\frac{\pi}{4}}

y1=[1+2(22)]22y_1=\left[1+2\left(\frac{\sqrt{2}}{2}\right)\right]\frac{\sqrt{2}}{2}

y1=(1+2)22y_1=\left(1+\sqrt{2}\right)\frac{\sqrt{2}}{2}

y1=2+22y_1=\frac{\sqrt{2}+2}{2}

y1=2+22y_1=\frac{2+\sqrt{2}}{2}

Plugging mm and (x1,y1)\left(x_1,y_1\right) into the point-slope formula for the equation of a line, we get

yy1=m(xx1)y-y_1=m(x-x_1)

y2+22=1227(x2+22)y-\frac{2+\sqrt{2}}{2}=\frac{1-2\sqrt{2}}{7}\left(x-\frac{2+\sqrt{2}}{2}\right)

y2+22=1227x2+242414y-\frac{2+\sqrt{2}}{2}=\frac{1-2\sqrt{2}}{7}x-\frac{2+\sqrt{2}-4\sqrt{2}-4}{14}

y2+22=1227x32214y-\frac{2+\sqrt{2}}{2}=\frac{1-2\sqrt{2}}{7}x-\frac{-3\sqrt{2}-2}{14}

y2+22=1227x+32+214y-\frac{2+\sqrt{2}}{2}=\frac{1-2\sqrt{2}}{7}x+\frac{3\sqrt{2}+2}{14}

2y(2+2)=2427x+32+272y-\left(2+\sqrt{2}\right)=\frac{2-4\sqrt{2}}{7}x+\frac{3\sqrt{2}+2}{7}

Eliminate the fractions by multiplying through by 77.

14y7(2+2)=(242)x+32+214y-7\left(2+\sqrt{2}\right)=\left(2-4\sqrt{2}\right)x+3\sqrt{2}+2

14y=(242)x+32+2+7(2+2)14y=\left(2-4\sqrt{2}\right)x+3\sqrt{2}+2+7\left(2+\sqrt{2}\right)

14y=(242)x+32+2+14+7214y=\left(2-4\sqrt{2}\right)x+3\sqrt{2}+2+14+7\sqrt{2}

14y=(242)x+16+10214y=\left(2-4\sqrt{2}\right)x+16+10\sqrt{2}

14y(242)x=16+10214y-\left(2-4\sqrt{2}\right)x=16+10\sqrt{2}

7y(122)x=8+527y-\left(1-2\sqrt{2}\right)x=8+5\sqrt{2}

The equation of the tangent line is 7y(122)x=8+527y-\left(1-2\sqrt{2}\right)x=8+5\sqrt{2}.

 
Krista King.png
 

Get access to the complete Calculus 2 course