How to solve trigonometric limit problems

 
 
Trigonometric limits blog post.jpeg
 
 
 

Formulas we use to solve limit problems

Trigonometric limit problems revolve around three formulas:

limθ0sinθ=0\lim_{\theta\to0}\sin{\theta}=0

limθ0cosθ=1\lim_{\theta\to0}\cos{\theta}=1

limx0sinxx=1\lim_{x\to0}\frac{\sin{x}}{x}=1

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

When we solve trigonometric limit problems, our goal is always to reduce the function to a combination of nothing but these three formulas and simple constants.

 
 

How to solve trigonometric limit problems with trig limit formulas


 
Krista King Math Signup.png
 
Calculus 1 course.png

Take the course

Want to learn more about Calculus 1? I have a step-by-step course for that. :)

 
 

 
 

Let’s do an example where we evaluate the trig limit

Example

Evaluate the limit.

limx01cosxx\lim_{x\to0}\frac{1-\cos{x}}{x}

Since we have exactly two terms in the numerator, we’re actually going to borrow the conjugate method for the first step of this problem.

limx01cosxx(1+cosx1+cosx)\lim_{x\to0}\frac{1-\cos{x}}{x}\cdot\left(\frac{1+\cos{x}}{1+\cos{x}}\right)

limx01cos2xx(1+cosx)\lim_{x\to0}\frac{1-\cos^2{x}}{x(1+\cos{x})}

Applying the identity 1cos2x=sin2x1-\cos^2{x}=\sin^2{x} to the numerator gives

limx0sin2xx(1+cosx)\lim_{x\to0}\frac{\sin^2{x}}{x(1+\cos{x})}

Trigonometric limits for Calculus 1

When we solve trigonometric limit problems, our goal is always to reduce the function to a combination of nothing but these three formulas and simple constants.

Notice now that we can factor out (sinx)/x(\sin{x})/x, which is one of our three fundamental formulas.

limx0sinxxsinx1+cosx\lim_{x\to0}\frac{\sin{x}}{x}\cdot\frac{\sin{x}}{1+\cos{x}}

limx0sinxxlimx0sinx1+cosx\lim_{x\to0}\frac{\sin{x}}{x}\cdot\lim_{x\to0}\frac{\sin{x}}{1+\cos{x}}

Since the first limit is one of our three fundamental formulas, we can replace it with its value.

1limx0sinx1+cosx1\cdot\lim_{x\to0}\frac{\sin{x}}{1+\cos{x}}

limx0sinx1+cosx\lim_{x\to0}\frac{\sin{x}}{1+\cos{x}}

And now we can evaluate the limit at x0x\to 0 without making the denominator 00.

sin01+cos0\frac{\sin{0}}{1+\cos{0}}

01+1\frac{0}{1+1}

00

So the limit is 00.

limx01cosxx=0\lim_{x\to0}\frac{1-\cos{x}}{x}=0

 
Krista King.png
 

Get access to the complete Calculus 1 course