How to find the unit tangent vector

 
 
Unit tangent vector blog post.jpeg
 
 
 

Formula for the unit tangent vector

To find the unit tangent vector for a vector function, we use the formula

???T(t)=\frac{r'(t)}{||r'(t)||}???

where ???r'(t)??? is the derivative of the vector function ???r(t)=r(t)_1\bold i+r(t)_2\bold j+r(t)_3\bold k??? and ???t??? is given.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Remember that ???||r'(t)||??? is the magnitude of the derivative of the vector function at time ???t???. We can find ???|r'(t)|??? using the formula

???||r'(t)||=\sqrt{[r'(t)_1]^2+[r'(t)_2]^2+[r'(t)_3]^2}???

 
 

How to find the unit tangent vector to a vector function at a particular parameter value


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Let’s do a step-by-step example of how to find the unit tangent vector for a vector function

Example

Find the unit tangent vector of the vector function at the given value of ???t=1???.

???r(t)=4t^3\bold i+6t\bold j+4t\ln(t)\bold k???

We’ll start by finding the derivative of the vector function ???r(t)=4t^3\bold i+6t\bold j+4t\ln(t)\bold k??? at time ???t=1??? so that we can plug it into the formula for the unit tangent vector. To find the derivative, we’ll just replace each of the coefficients with their derivatives. The derivative of ???4t^3??? is ???12t^2???; the derivative of ???6t??? is ???6???; the derivative of ???4t\ln{(t)}??? using product rule is ???(4)(\ln(t))+(4t)(1/t)???.

???r'(t)=12t^2\bold i+6\bold j+\left[(4)(\ln(t))+(4t)\left(\frac{1}{t}\right)\right]\bold k???

???r'(t)=12t^2\bold i+6\bold j+[4\ln(t)+4]\bold k???

Now we’ll find the value of the derivative at ???t=1???.

???r'(1)=12(1)^2\bold i+6\bold j+[4\ln(1)+4]\bold k???

???r'(1)=12\bold i+6\bold j+[4(0)+4]\bold k???

???r'(1)=12\bold i+6\bold j+4\bold k???

Unit tangent vector for Calculus 3.jpg

Remember that ||r'(t)|| is the magnitude of the derivative of the vector function at time t.

Now we’ll use the values from the derivative to find the magnitude of the vector function at ???t=1??? so that we can plug it into the formula for the unit tangent vector.

???||r'(t)||=\sqrt{[r'(t)_1]^2+[r'(t)_2]^2+[r'(t)_3]^2}???

???||r'(1)||=\sqrt{12^2+6^2+4^2}???

???||r'(1)||=\sqrt{144+36+16}???

???||r'(1)||=\sqrt{196}???

???||r'(1)||=14???

Plugging everything into the formula for the unit tangent vector, we get

???T(1)=\frac{12\bold i+6\bold j+4\bold k}{14}???

???T(1)=\frac{12}{14}\bold i+\frac{6}{14}\bold j+\frac{4}{14}\bold k???

???T(1)=\frac{6}{7}\bold i+\frac{3}{7}\bold j+\frac{2}{7}\bold k???

which is the equation of the unit tangent vector for ???r(t)=4t^3\bold i+6t\bold j+4t\ln(t)\bold k???.

 
Krista King.png
 

Get access to the complete Calculus 3 course