Finding volume for triple integrals using spherical coordinates

 
 
Finding volume for triple integrals in spherical coordinates blog post.jpeg
 
 
 

Volume formula in spherical coordinates

We can use triple integrals and spherical coordinates to solve for the volume of a solid sphere. The volume formula in rectangular coordinates is

V=Bf(x,y,z) dVV=\int\int\int_Bf(x,y,z)\ dV

where BB represents the solid sphere and dVdV can be defined in spherical coordinates as

dV=ρ2sin dρ dθ dϕdV=\rho^2\sin\ d\rho\ d\theta\ d\phi

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

To convert in general from rectangular to spherical coordinates, we can use the formulas

x=ρsinx=\rho\sin

y=ρsiny=\rho\sin

z=ρcosz=\rho\cos

ρ2=x2+y2+z2\rho^2=x^2+y^2+z^2

Remember, rectangular coordinates are given as (x,y,z)(x,y,z), and spherical coordinates are given as (ρ,θ,ϕ)(\rho,\theta,\phi).

In order to find limits of integration for the triple integral, we’ll say that ϕ\phi is defined on the interval [0,π][0,\pi] and that θ\theta is defined on the interval [0,2π][0,2\pi]. Then we only have to find an interval for ρ\rho.

 
 

Using triple integrals in spherical coordinates to find volume


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Finding volume given by a triple integral over the sphere, using spherical coordinates

Example

Use spherical coordinates to find the volume of the triple integral, where BB is a sphere with center (0,0,0)(0,0,0) and radius 44.

Bx2+y2+z2 dV\int\int\int_Bx^2+y^2+z^2\ dV

Using the conversion formula ρ2=x2+y2+z2\rho^2=x^2+y^2+z^2, we can change the given function into spherical notation.

Bx2+y2+z2 dV=Bρ2 dV\int\int\int_Bx^2+y^2+z^2\ dV=\int\int\int_B\rho^2\ dV

Then we’ll use dV=ρ2sin dρ dθ dϕdV=\rho^2\sin\ d\rho\ d\theta\ d\phi to make a substitution for dVdV.

Bρ2(ρ2sin dρ dθ dϕ)\int\int\int_B\rho^2\left(\rho^2\sin\ d\rho\ d\theta\ d\phi\right)

Bρ4sin dρ dθ dϕ\int\int\int_B\rho^4\sin\ d\rho\ d\theta\ d\phi

Now we’ll find limits of integration. We already know the limits of integration for ϕ\phi and θ\theta, since they are always the same if we’re dealing with a full sphere, so we get

0π0 dρ dθ dϕ\int_0^\pi\int_0^\ d\rho\ d\theta\ d\phi

Since ρ\rho defines the radius of the sphere, and we’re told that this sphere has its center at (0,0,0)(0,0,0) and radius 44, ρ\rho is defined on [0,4][0,4], so

0π0 dρ dθ dϕ\int_0^\pi\int_0^\ d\rho\ d\theta\ d\phi

Finding volume for triple integrals in spherical coordinates for Calculus 3.jpg

We can use triple integrals and spherical coordinates to solve for the volume of a solid sphere.

We always integrate inside out, so we’ll integrate with respect to ρ\rho first, treating all other variables as constants.

V=0π02π15ρ5sinϕ ρ=4dθ dϕV=\int^{\pi}_0\int^{2\pi}_0\frac15\rho^5\sin{\phi}\Big|^{\rho=4}_\ d\theta\ d\phi

V= dθ dϕV=\int^\ d\theta\ d\phi

V= dθ dϕV=\int^\ d\theta\ d\phi

Now we’ll integrate with respect to θ\theta, treating all other variables as constants.

V=1,02450πθsinϕ θ=2πdϕV=\frac{1,024}{5}\int^{\pi}_0\theta\sin{\phi}\Big|^{\theta=2\pi}_\ d\phi

V= dϕV=\frac\ d\phi

V= dϕV=\frac\ d\phi

Finally, we’ll integrate with respect to ϕ\phi.

V=2,048π5(cosϕ)0πV=\frac{2,048\pi}{5}\left(-\cos{\phi}\right)\Big|^{\pi}_0

V=2,048πcosϕ50πV=-\frac{2,048\pi\cos{\phi}}{5}\Big|^{\pi}_0

???V=-\frac\right]???

???V=-\frac(1)???

???V=\frac???

???V=\frac???

This is the volume of the region bounded beneath the surface ???x^2+y^2+z^2??? and above the sphere defined by ???B???.

 
Krista King.png
 

Get access to the complete Calculus 3 course