Finding arc length of a parametric curve

 
 
Arc length of a parametric curve blog post.jpeg
 
 
 

Formula for arc length of a parametric curve

The arc length of a parametric curve over the interval αtβ\alpha\le{t}\le\beta is given by

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

L=αβ(dxdt)2+(dydt)2 dtL=\int^\beta_\alpha\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\ dt

where α\alpha and β\beta are the limits of the interval

where dx/dtdx/dt is the derivative of x(t)x(t)

where dy/dtdy/dt is the derivative of y(t)y(t)

 
 

How to find the arc length of a parametric curve


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Calculating parametric arc length

Example

Find the length of the parametric curve over 0t2π0\le{t}\le2\pi.

x=5sintx=5\sin{t}

y=5costy=5\cos{t}

We need to find the derivatives of the parametric equations.

x=5sintx=5\sin{t}

dxdt=5cost\frac{dx}{dt}=5\cos{t}

and

y=5costy=5\cos{t}

dydt=5sint\frac{dy}{dt}=-5\sin{t}

Arc length of a parametric curve for Calculus 2.jpg

Since we were given the limits of integration in the problem, we’re ready to plug everything into the arc length formula.

Since we were given the limits of integration in the problem, we’re ready to plug everything into the arc length formula.

L=02π(5cost)2+(5sint)2 dtL=\int^{2\pi}_0\sqrt{(5\cos{t})^2+(-5\sin{t})^2}\ dt

L=02π25cos2t+25sin2t dtL=\int^{2\pi}_0\sqrt{25\cos^2{t}+25\sin^2{t}}\ dt

L=02π25(cos2t+sin2t) dtL=\int^{2\pi}_0\sqrt{25(\cos^2{t}+\sin^2{t})}\ dt

Since cos2t+sin2t=1\cos^2{t}+\sin^2{t}=1, we get

L=02π25(1) dtL=\int^{2\pi}_0\sqrt{25(1)}\ dt

L=02π5 dtL=\int^{2\pi}_05\ dt

L=5t02πL=5t\big|^{2\pi}_0

L=5(2π)5(0)L=5(2\pi)-5(0)

L=10πL=10\pi

 
Krista King.png
 

Get access to the complete Calculus 2 course