Volume of the parallelepiped from vectors

 
 
Volume of the parallelepiped from vectors blog post.jpeg
 
 
 

Formula for volume of the parallelepiped

If we need to find the volume of a parallelepiped and we’re given three vectors, all we have to do is find the scalar triple product of the three vectors:

a(b×c)|a\cdot(b\times c)|

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

where the given vectors are aa1,a2,a3a\langle{a_1},a_2,a_3\rangle, bb1,b2,b3b\langle{b_1},b_2,b_3\rangle and cc1,c2,c3c\langle{c_1},c_2,c_3\rangle. b×cb\times c is the cross product of bb and cc, and we’ll find it using the 3×33\times 3 matrix

iamp;jamp;kb1amp;b2amp;b3c1amp;c2amp;c3=ib2amp;b3c2amp;c3jb1amp;b3c1amp;c3+kb1amp;b2c1amp;c2\begin{vmatrix}\bold i&\bold j&\bold k\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix}=\bold i\begin{vmatrix}b_2&b_3\\c_2&c_3\end{vmatrix}-\bold j\begin{vmatrix}b_1&b_3\\c_1&c_3\end{vmatrix}+\bold k\begin{vmatrix}b_1&b_2\\c_1&c_2\end{vmatrix}

=i(b2c3b3c2)j(b1c3b3c1)+k(b1c2b2c1)=\bold i(b_2c_3-b_3c_2)-\bold j(b_1c_3-b_3c_1)+\bold k(b_1c_2-b_2c_1)

We’ll convert the result of the cross product into standard vector form, and then take the dot product of aa1,a2,a3a\langle{a_1},a_2,a_3\rangle and the vector result of b×cb\times c. The final answer is the value of the scalar triple product, which is the volume of the parallelepiped.

 
 

Using vectors that define the parallelepiped to find its volume


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Finding volume of the parallelepiped given by the vectors

Example

Find the volume of the parallelepiped given by the vectors.

a2,1,3a\langle2,-1,3\rangle

b3,2,4b\langle3,2,-4\rangle

c2,0,1c\langle-2,0,1\rangle

We’ll start by taking the cross product of bb and cc.

b×c=iamp;jamp;k3amp;2amp;42amp;0amp;1b\times c=\begin{vmatrix}\bold i&\bold j&\bold k \\ 3 & 2 & -4 \\ -2 & 0 & 1\end{vmatrix}

b×c=i2amp;40amp;1j3amp;42amp;1+k3amp;22amp;0b\times c=\bold i\begin{vmatrix}2 & -4\\ 0 & 1\end{vmatrix}-\bold j\begin{vmatrix}3 & -4\\ -2 & 1\end{vmatrix}+\bold k\begin{vmatrix}3 & 2\\ -2 & 0\end{vmatrix}

b×c=[(2)(1)(4)(0)]i[(3)(1)(4)(2)]j+[(3)(0)(2)(2)]kb\times c=\left[(2)(1)-(-4)(0)\right]\bold i-\left[(3)(1)-(-4)(-2)\right]\bold j+\left[(3)(0)-(2)(-2)\right]\bold k

b×c=(2+0)i(38)j+(0+4)kb\times c=(2+0)\bold i-(3-8)\bold j+(0+4)\bold k

b×c=2i+5j+4kb\times c=2\bold i+5\bold j+4\bold k

b×c=2,5,4b\times c=\langle2,5,4\rangle

Volume of the parallelepiped from vectors for Calculus 3.jpg

The final answer is the value of the scalar triple product, which is the volume of the parallelepiped.

Now we’ll take the dot product of a2,1,3a\langle2,-1,3\rangle and b×c=2,5,4b\times c=\langle2,5,4\rangle.

a(b×c)=(2)(2)+(1)(5)+(3)(4)|a\cdot(b\times c)|=(2)(2)+(-1)(5)+(3)(4)

a(b×c)=45+12|a\cdot(b\times c)|=4-5+12

a(b×c)=11|a\cdot(b\times c)|=11

The volume of the parallelepiped is 1111.

 
Krista King.png
 

Get access to the complete Calculus 3 course