Surface area of revolution of a parametric curve, horizontal axis

 
 
Surface area of revolution of a parametric curve, horizontal axis blog post.jpeg
 
 
 

Formula for the surface area of revolution

The surface area of the solid created by revolving a parametric curve around the xx-axis is given by

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Sx=ab2πy[f(t)]2+[g(t)]2 dtS_x=\int^b_a 2\pi{y}\sqrt{\left[f'(t)\right]^2+\left[g'(t)\right]^2}\ dt

where the curve is defined over the interval [a,b][a,b],

where f(t)f'(t) is the derivative of the curve f(t)f(t)

where g(t)g'(t) is the derivative of the curve g(t)g(t)

 
 

How to find the surface area of revolution of a parametric curve


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding surface area of revolution of a parametric curve when we rotate around the x-axis

Example

Find the surface area of revolution of the solid created when the parametric curve is rotated around the xx-axis over the interval 0tπ20\le t\le\frac{\pi}{2}.

x=cos3tx=\cos^3{t}

y=sin3ty=\sin^3{t}

We’ll call the parametric equations

f(t)=cos3tf(t)=\cos^3{t}

g(t)=sin3tg(t)=\sin^3{t}

The limits of integration are defined in the problem, but we need to find both derivatives before we can plug into the formula.

f(t)=3cos2tsintf'(t)=-3\cos^2{t}\sin{t}

g(t)=3sin2tcostg'(t)=3\sin^2{t}\cos{t}

Now we’ll plug into the formula for the surface area of revolution.

Sx=0π22π(sin3t)(3cos2tsint)2+(3sin2tcost)2 dtS_x=\int^{\frac{\pi}{2}}_0 2\pi{\left(\sin^3{t}\right)}\sqrt{\left(-3\cos^2{t}\sin{t}\right)^2+\left(3\sin^2{t}\cos{t}\right)^2}\ dt

Sx=0π22πsin3t9cos4tsin2t+9sin4tcos2t dtS_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\cos^4{t}\sin^2{t}+9\sin^4{t}\cos^2{t}}\ dt

Sx=0π22πsin3t9sin2tcos2t(cos2t+sin2t) dtS_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\sin^2{t}\cos^2{t}\left(\cos^2{t}+\sin^2{t}\right)}\ dt

Surface area of revolution of a parametric curve, horizontal axis for Calculus 2.jpg

We need to find both derivatives before we can plug into the formula.

Since sin2t+cos2t=1\sin^2{t}+\cos^2{t}=1, we get

Sx=0π22πsin3t9sin2tcos2t(1) dtS_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\sin^2{t}\cos^2{t}\left(1\right)}\ dt

Sx=0π22πsin3t9sin2tcos2t dtS_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\sqrt{9\sin^2{t}\cos^2{t}}\ dt

Sx=0π22πsin3t(3sintcost) dtS_x=\int^{\frac{\pi}{2}}_0 2\pi\sin^3{t}\left(3\sin{t}\cos{t}\right)\ dt

Sx=6π0π2sin4tcost dtS_x=6\pi\int^{\frac{\pi}{2}}_0\sin^4{t}\cos{t}\ dt

We’ll use u-substitution, letting

u=sintu=\sin{t}

du=cost dtdu=\cos{t}\ dt

We’ll make the substitution.

Sx=6πx=0x=π2u4 duS_x=6\pi\int^{x=\frac{\pi}{2}}_{x=0}u^4\ du

Sx=6π5u5x=0x=π2S_x=\frac{6\pi}{5}u^5\Big|^{x=\frac{\pi}{2}}_{x=0}

Back-substituting for uu, we get

Sx=6π5sin5t0π2S_x=\frac{6\pi}{5}\sin^5{t}\Big|^{\frac{\pi}{2}}_0

Sx=(6π5sin5π2)(6π5sin50)S_x=\left(\frac{6\pi}{5}\sin^5{\frac{\pi}{2}}\right)-\left(\frac{6\pi}{5}\sin^5{0}\right)

Sx=6π5(1)56π5(0)5S_x=\frac{6\pi}{5}(1)^5-\frac{6\pi}{5}(0)^5

Sx=6π5S_x=\frac{6\pi}{5}

 
Krista King.png
 

Get access to the complete Calculus 2 course