How to find the volume of the parallelepiped from its adjacent edges

 
 
Volume of the parallelepiped from adjacent edges blog post.jpeg
 
 
 

Formulas for volume of the parallelepiped

If we need to find the volume of a parallelepiped and we’re given three adjacent edges of it, all we have to do is find the scalar triple product of the three vectors that define the edges:

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

PS(PQ×PR)|\vec{PS}\cdot(\vec{PQ}\times \vec{PR})|

where PS\vec{PS}, PQ\vec{PQ} and PR\vec{PR} are the three adjacent edges.

First we’ll find the vectors PQ\vec{PQ}, PR\vec{PR} and PS\vec{PS}, then we’ll find the cross product PQ×PR\vec{PQ}\times \vec{PR} using the 3×33\times 3 matrix

iamp;jamp;kPQ1amp;PQ2amp;PQ3PR1amp;PR2amp;PR3=iPQ2amp;PQ3PR2amp;PR3jPQ1amp;PQ3PR1amp;PR3+kPQ1amp;PQ2PR1amp;PR2\begin{vmatrix}\bold i&\bold j&\bold k\\PQ_1&PQ_2&PQ_3\\PR_1&PR_2&PR_3\end{vmatrix}=\bold i\begin{vmatrix}PQ_2&PQ_3\\PR_2&PR_3\end{vmatrix}-\bold j\begin{vmatrix}PQ_1&PQ_3\\PR_1&PR_3\end{vmatrix}+\bold k\begin{vmatrix}PQ_1&PQ_2\\PR_1&PR_2\end{vmatrix}

=(PQ2PR3PQ3PR2)i(PQ1PR3PQ3PR1)j+(PQ1PR2PQ2PR1)k=(PQ_2PR_3-PQ_3PR_2)\bold i-(PQ_1PR_3-PQ_3PR_1)\bold j+(PQ_1PR_2-PQ_2PR_1)\bold k

We’ll convert the result of the cross product into standard vector form, and then take the dot product of PSPS1,PS2,PS3\vec{PS}\langle{PS_1},PS_2,PS_3\rangle and the vector result of PQ×PR\vec{PQ}\times\vec{PR}. The final answer is the value of the scalar triple product, which is the volume of the parallelepiped.

 
 

How to find the volume of a parallelepiped, given three vectors that define its edges


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Building three vectors from four points, then using the vectors to find the parallelepiped’s volume

Example

Find the volume of the parallelepiped given by the adjacent edges PQ\vec{PQ}, PR\vec{PR} and PS\vec{PS}.

P(5,1,2)P(5,1,-2)

Q(0,1,3)Q(0,-1,3)

R(3,2,4)R(3,2,-4)

S(1,2,0)S(1,-2,0)

We need to start by using the four points to find the vectors PQ\vec{PQ}, PR\vec{PR} and PS\vec{PS}, since these are the three adjacent edges of the parallelepiped.

PQ=05,11,3(2)\vec{PQ}=\langle0-5,-1-1,3-(-2)\rangle

PQ=5,2,5\vec{PQ}=\langle-5,-2,5\rangle

and

PR=35,21,4(2)\vec{PR}=\langle3-5,2-1,-4-(-2)\rangle

PR=2,1,2\vec{PR}=\langle-2,1,-2\rangle

and

PS=15,21,0(2)\vec{PS}=\langle1-5,-2-1,0-(-2)\rangle

PS=4,3,2\vec{PS}=\langle-4,-3,2\rangle

Volume of the parallelepiped from adjacent edges for Calculus 3.jpg

The final answer is the value of the scalar triple product, which is the volume of the parallelepiped.

Now we need to take the cross product of PQ\vec{PQ} and PR\vec{PR}.

PQ×PR=iamp;jamp;k5amp;2amp;52amp;1amp;2\vec{PQ}\times\vec{PR}=\begin{vmatrix}\bold i&\bold j&\bold k\\-5&-2&5\\-2&1&-2\end{vmatrix}

PQ×PR=i2amp;51amp;2j5amp;52amp;2+k5amp;22amp;1\vec{PQ}\times\vec{PR}=\bold i\begin{vmatrix}-2&5\\1&-2\end{vmatrix}-\bold j\begin{vmatrix}-5&5\\-2&-2\end{vmatrix}+\bold k\begin{vmatrix}-5&-2\\-2&1\end{vmatrix}

PQ×PR=[(2)(2)(5)(1)]i[(5)(2)(5)(2)]j+[(5)(1)(2)(2)]k\vec{PQ}\times\vec{PR}=\left[(-2)(-2)-(5)(1)\right]\bold i-\left[(-5)(-2)-(5)(-2)\right]\bold j+\left[(-5)(1)-(-2)(-2)\right]\bold k

PQ×PR=(45)i(10+10)j+(54)k\vec{PQ}\times\vec{PR}=(4-5)\bold i-(10+10)\bold j+(-5-4)\bold k

PQ×PR=i20j9k\vec{PQ}\times\vec{PR}=-\bold i-20\bold j-9\bold k

PQ×PR=1,20,9\vec{PQ}\times\vec{PR}=\langle-1,-20,-9\rangle

Taking the dot product of PS=4,3,2\vec{PS}=\langle-4,-3,2\rangle and PQ×PR=1,20,9\vec{PQ}\times\vec{PR}=\langle-1,-20,-9\rangle, we get

PS(PQ×PR)=(4)(1)+(3)(20)+(2)(9)\left|\vec{PS}\cdot\left(\vec{PQ}\times\vec{PR}\right)\right|=(-4)(-1)+(-3)(-20)+(2)(-9)

PS(PQ×PR)=4+6018\left|\vec{PS}\cdot\left(\vec{PQ}\times\vec{PR}\right)\right|=4+60-18

PS(PQ×PR)=46\left|\vec{PS}\cdot\left(\vec{PQ}\times\vec{PR}\right)\right|=46

The volume of the parallelepiped is 4646.

 
Krista King.png
 

Get access to the complete Calculus 3 course