Calculating the area between polar curves

 
 
Area between polar curves blog post.jpeg
 
 
 

Five steps for finding the area between polar curves

In order to calculate the area between two polar curves, we’ll

  1. Find the points of intersection if the interval isn’t given

  2. Graph the curves to confirm the points of intersection

  3. For each enclosed region, use the points of intersection to find upper and lower limits of integration [α,β][\alpha,\beta]

  4. For each enclosed region, determine which curve is the outer curve and which is the inner

  5. Plug this into the formula for area between curves,

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

A=αβ12(rO2rI2) dθA=\int^{\beta}_{\alpha}\frac12\left(r^2_O-r^2_I\right)\ d\theta

where [α,β][\alpha,\beta] is the interval that defines the area

where rOr_O is the outer curve

where rIr_I is the inner curve

 
 

Video example of how to calculate the area enclosed by two polar curves


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding the area between two polar curves

Example

Find the area between the polar curves.

  1. r=2r=2

  2. r=3+2sinθr=3+2\sin{\theta}

Since the problem doesn’t give us an interval over which to evaluate the area, we’ll need to find the points of intersection of the curves. We’ll set the polar curves equal to each other and solve for θ\theta.

3+2sinθ=23+2\sin{\theta}=2

sinθ=12\sin{\theta}=-\frac12

θ=7π6, 11π6\theta=\frac{7\pi}{6},\ \frac{11\pi}{6}

We’ll graph the curves to confirm the points of intersection.

graphing curves to confirm points of intersection

Based on the graph above, the area between curves is given by

AT=A1+A2A_T=A_1+A_2

where ATA_T is total area

where A1A_1 is the larger section

where A2A_2 is the smaller section

We always want to work in a counterclockwise direction, which means that, in order to find A1A_1 and A2A_2, we’ll use the intervals

two sections of area between polar curves

However, we always need α<β\alpha<\beta in our interval, so we’ll change the interval for A1A_1 into its equivalent θ-\theta, and we’ll get

changing the interval for the area between polar curves

We’ll also need to use the graph to indicate which curve is the outer curve and which is the inner curve. We’ll say

outer and inner curves for area between polar curves

Now we can plug everything we’ve found into the area formula.

AT=A1+A2A_T=A_1+A_2

AT=π67π612[(3+2sinθ)2(2)2] dθ+7π611π612[(2)2(3+2sinθ)2] dθA_T=\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}\frac12\left[\left(3+2\sin{\theta}\right)^2-(2)^2\right]\ d\theta+\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}\frac12\left[(2)^2-\left(3+2\sin{\theta}\right)^2\right]\ d\theta

AT=12π67π6(3+2sinθ)(3+2sinθ)4 dθ+127π611π64(3+2sinθ)(3+2sinθ) dθA_T=\frac12\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}\left(3+2\sin{\theta}\right)\left(3+2\sin{\theta}\right)-4\ d\theta+\frac12\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}4-\left(3+2\sin{\theta}\right)\left(3+2\sin{\theta}\right)\ d\theta

AT=12π67π69+12sinθ+4sin2θ4 dθ+127π611π64(9+12sinθ+4sin2θ) dθA_T=\frac12\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}9+12\sin{\theta}+4\sin^2{\theta}-4\ d\theta+\frac12\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}4-\left(9+12\sin{\theta}+4\sin^2{\theta}\right)\ d\theta

AT=12π67π64sin2θ+12sinθ+5 dθ+127π611π64912sinθ4sin2θ dθA_T=\frac12\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}4\sin^2{\theta}+12\sin{\theta}+5\ d\theta+\frac12\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}4-9-12\sin{\theta}-4\sin^2{\theta}\ d\theta

AT=12π67π64sin2θ+12sinθ+5 dθ127π611π64sin2θ+12sinθ+5 dθA_T=\frac12\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}4\sin^2{\theta}+12\sin{\theta}+5\ d\theta-\frac12\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}4\sin^2{\theta}+12\sin{\theta}+5\ d\theta

Since 2sin2θ=1cos(2θ)2\sin^2{\theta}=1-\cos{(2\theta)},

AT=12π67π62[1cos(2θ)]+12sinθ+5 dθ127π611π62[1cos(2θ)]+12sinθ+5 dθA_T=\frac12\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}2\left[1-\cos{(2\theta)}\right]+12\sin{\theta}+5\ d\theta-\frac12\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}2\left[1-\cos{(2\theta)}\right]+12\sin{\theta}+5\ d\theta

AT=12π67π622cos(2θ)+12sinθ+5 dθ127π611π622cos(2θ)+12sinθ+5 dθA_T=\frac12\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}2-2\cos{(2\theta)}+12\sin{\theta}+5\ d\theta-\frac12\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}2-2\cos{(2\theta)}+12\sin{\theta}+5\ d\theta

AT=12π67π612sinθ2cos(2θ)+7 dθ127π611π612sinθ2cos(2θ)+7 dθA_T=\frac12\int_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}12\sin{\theta}-2\cos{(2\theta)}+7\ d\theta-\frac12\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}12\sin{\theta}-2\cos{(2\theta)}+7\ d\theta

AT=12[12cosθsin(2θ)+7θ]π67π612[12cosθsin(2θ)+7θ]7π611π6A_T=\frac12\left[-12\cos{\theta}-\sin{(2\theta)}+7\theta\right]\bigg|_{-\frac{\pi}{6}}^{\frac{7\pi}{6}}-\frac12\left[-12\cos{\theta}-\sin{(2\theta)}+7\theta\right]\bigg|_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}

Area between polar curves for Calculus 2.jpg

Since the problem doesn’t give us an interval over which to evaluate the area, we’ll need to find the points of intersection of the curves.

Evaluate over the interval.

AT=12[12cos7π6sin14π6+7(7π6)[12cos(π6)sin(2π6)+7(π6)]]A_T=\frac12\left[-12\cos{\frac{7\pi}{6}}-\sin{\frac{14\pi}{6}}+7\left(\frac{7\pi}{6}\right)-\left[-12\cos{\left(-\frac{\pi}{6}\right)}-\sin{\left(-\frac{2\pi}{6}\right)}+7\left(-\frac{\pi}{6}\right)\right]\right]

12[12cos11π6sin22π6+7(11π6)[12cos7π6sin14π6+7(7π6)]]-\frac12\left[-12\cos{\frac{11\pi}{6}}-\sin{\frac{22\pi}{6}}+7\left(\frac{11\pi}{6}\right)-\left[-12\cos{\frac{7\pi}{6}}-\sin{\frac{14\pi}{6}}+7\left(\frac{7\pi}{6}\right)\right]\right]

AT=12[12cos7π6sin7π3+49π6(12cos11π6sin5π67π6)]A_T=\frac12\left[-12\cos{\frac{7\pi}{6}}-\sin{\frac{7\pi}{3}}+\frac{49\pi}{6}-\left(-12\cos{\frac{11\pi}{6}}-\sin{\frac{5\pi}{6}}-\frac{7\pi}{6}\right)\right]

12[12cos11π6sin11π3+77π6(12cos7π6sin7π3+49π6)]-\frac12\left[-12\cos{\frac{11\pi}{6}}-\sin{\frac{11\pi}{3}}+\frac{77\pi}{6}-\left(-12\cos{\frac{7\pi}{6}}-\sin{\frac{7\pi}{3}}+\frac{49\pi}{6}\right)\right]

AT=12(12cos7π6sin7π3+49π6+12cos11π6+sin5π6+7π6)A_T=\frac12\left(-12\cos{\frac{7\pi}{6}}-\sin{\frac{7\pi}{3}}+\frac{49\pi}{6}+12\cos{\frac{11\pi}{6}}+\sin{\frac{5\pi}{6}}+\frac{7\pi}{6}\right)

12(12cos11π6sin11π3+77π6+12cos7π6+sin7π349π6)-\frac12\left(-12\cos{\frac{11\pi}{6}}-\sin{\frac{11\pi}{3}}+\frac{77\pi}{6}+12\cos{\frac{7\pi}{6}}+\sin{\frac{7\pi}{3}}-\frac{49\pi}{6}\right)

AT=12(12cos7π6sin7π3+12cos11π6+sin5π6+28π3)A_T=\frac12\left(-12\cos{\frac{7\pi}{6}}-\sin{\frac{7\pi}{3}}+12\cos{\frac{11\pi}{6}}+\sin{\frac{5\pi}{6}}+\frac{28\pi}{3}\right)

12(12cos11π6sin11π3+12cos7π6+sin7π3+14π3)-\frac12\left(-12\cos{\frac{11\pi}{6}}-\sin{\frac{11\pi}{3}}+12\cos{\frac{7\pi}{6}}+\sin{\frac{7\pi}{3}}+\frac{14\pi}{3}\right)

Simplify the trigonometric functions.

AT=12[12(32)32+12(32)+12+28π3]A_T=\frac12\left[-12\left(-\frac{\sqrt{3}}{2}\right)-\frac{\sqrt{3}}{2}+12\left(\frac{\sqrt{3}}{2}\right)+\frac12+\frac{28\pi}{3}\right]

12[12(32)(32)+12(32)+32+14π3]-\frac12\left[-12\left(\frac{\sqrt{3}}{2}\right)-\left(-\frac{\sqrt{3}}{2}\right)+12\left(\frac{\sqrt{3}}{2}\right)+\frac{\sqrt{3}}{2}+\frac{14\pi}{3}\right]

AT=12(63232+1232+12+28π3)12(1232+32+1232+32+14π3)A_T=\frac12\left(\frac{6\sqrt{3}}{2}-\frac{\sqrt{3}}{2}+\frac{12\sqrt{3}}{2}+\frac12+\frac{28\pi}{3}\right)-\frac12\left(-\frac{12\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+\frac{12\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+\frac{14\pi}{3}\right)

AT=12(1+1732+28π3)12(232+14π3)A_T=\frac12\left(\frac{1+17\sqrt{3}}{2}+\frac{28\pi}{3}\right)-\frac12\left(\frac{2\sqrt{3}}{2}+\frac{14\pi}{3}\right)

AT=1+1734+28π623414π6A_T=\frac{1+17\sqrt{3}}{4}+\frac{28\pi}{6}-\frac{2\sqrt{3}}{4}-\frac{14\pi}{6}

AT=1+1534+14π6A_T=\frac{1+15\sqrt{3}}{4}+\frac{14\pi}{6}

AT=1+1534+7π3A_T=\frac{1+15\sqrt{3}}{4}+\frac{7\pi}{3}

Find a common denominator.

AT=3+45312+28π12A_T=\frac{3+45\sqrt{3}}{12}+\frac{28\pi}{12}

AT=28π+453+312A_T=\frac{28\pi+45\sqrt{3}+3}{12}

 
Krista King.png
 

Get access to the complete Calculus 2 course