How to find area under a parametric curve

 
 
Area under a parametric curve blog post.jpeg
 
 
 

Let’s take a look at the formulas we’ll use for calculating parametric area

Given a parametric curve where our function is defined by two equations, one for xx and one for yy, and both of them in terms of a parameter tt,

x=f(t)x=f(t)

y=g(t)y=g(t)

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

we’ll find the area under the curve using the integral formula

A=αβy(t)x(t) dtA=\int^{\beta}_{\alpha}y(t)x'(t)\ dt

where AA is the area under the curve, y(t)y(t) is y=g(t)y=g(t), and x(t)x'(t) is the derivative of x=f(t)x=f(t).

Keep in mind as you’re working these kinds of problems that this area formula won’t give us a real-number answer. Instead, it’ll give us a function that represents the area under any part of the parametric curve. In order to find a number value for the area, we’ll have to use a definite integral by defining an interval for the area.

 
 

How to calculate the area under (enclosed by) a parametric curve


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Finding the function that defines the area under the parametric curve

Example

Find the function that defines the area under the parametric curve.

x=2θcosθx=2\theta-\cos{\theta}

y=2+sinθy=2+\sin{\theta}

Don’t be confused by the fact that the parameter is θ\theta instead of tt. It’s still a parameter value, because xx and yy are both defined in terms of θ\theta.

We’ve already been given y(θ)y(\theta), but we need to find x(θ)x\prime(\theta) before we can plug into the area formula.

x=2θcosθx=2\theta-\cos{\theta}

x(θ)=2+sinθx'(\theta)=2+\sin{\theta}

Area under a parametric curve for Calculus 2.jpg

Instead, it’ll give us a function that represents the area under any part of the parametric curve.

Plugging y(θ)y(\theta) and x(θ)x'(\theta) into the area formula, we get

A=(2+sinθ)(2+sinθ) dθA=\int(2+\sin{\theta})(2+\sin{\theta})\ d\theta

A=4+4sinθ+sin2θ dθA=\int4+4\sin{\theta}+\sin^2{\theta}\ d\theta

Using the formula

sin2θ=12(1cos2θ)\sin^2{\theta}=\frac12(1-\cos{2\theta})

we’ll make a substitution for sin2θ\sin^2{\theta}.

A=4+4sinθ+12(1cos2θ) dθA=\int4+4\sin{\theta}+\frac12(1-\cos{2\theta})\ d\theta

A=4+4sinθ+1212cos2θ dθA=\int4+4\sin{\theta}+\frac12-\frac12\cos{2\theta}\ d\theta

A=92+4sinθ12cos2θ dθA=\int\frac92+4\sin{\theta}-\frac12\cos{2\theta}\ d\theta

A=92 dθ+4sinθ dθ12cos2θ dθA=\int\frac92\ d\theta+\int4\sin{\theta}\ d\theta-\int\frac12\cos{2\theta}\ d\theta

A=92θ4cosθ14sin2θA=\frac92\theta-4\cos{\theta}-\frac14\sin{2\theta}

 
Krista King.png
 

Get access to the complete Calculus 2 course