Changing triple integrals to cylindrical coordinates

 
 
Changing triple integrals to cylindrical coordinates blog post.jpeg
 
 
 

Formulas for converting triple integrals into cylindrical coordinates

To change a triple integral like

Bf(x,y,z) dV\int\int\int_Bf(x,y,z)\ dV

into cylindrical coordinates, we’ll need to convert both the limits of integration, the function itself, and dVdV from rectangular coordinates (x,y,z)(x,y,z) to cylindrical coordinates (r,θ,z)(r,\theta,z).

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

To do so, we’ll use the conversion formulas

x=rcosθx=r\cos{\theta}

y=rsinθy=r\sin{\theta}

z=zz=z

and

r2=x2+y2r^2=x^2+y^2

to convert the limits of integration and the function f(x,y,z)f(x,y,z). dVdV will be converted using the formula

dV=r dz dr dθdV=r\ dz\ dr\ d\theta

 
 

How to convert triple integrals into cylindrical coordinates, and then evaluate the converted triple integral


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Evaluate the triple integral in cylindrical coordinates

Example

Evaluate the triple integral in cylindrical coordinates.

339y29y2x2+y23xz dz dx dy\int^3_{-3}\int^{\sqrt{9-y^2}}_{-\sqrt{9-y^2}}\int^3_{\sqrt{x^2+y^2}}xz\ dz\ dx\ dy

Let’s start by converting the limits of integration from rectangular coordinates to cylindrical coordinates, starting with the innermost integral. These will be the limits of integration for zz, which means they need to be solved for zz once we get them to cylindrical coordinates. The upper limit 33 can stay the same since z=zz=z when we go from rectangular to cylindrical coordinates, but the lower limit needs to be converted using the conversion formulas.

z=x2+y2z=\sqrt{x^2+y^2}

z=[rcosθ]2+[rsinθ]2z=\sqrt{\left[r\cos{\theta}\right]^2+\left[r\sin{\theta}\right]^2}

z=r2cos2θ+r2sin2θz=\sqrt{r^2\cos^2{\theta}+r^2\sin^2{\theta}}

z=r2(cos2θ+sin2θ)z=\sqrt{r^2\left(\cos^2{\theta}+\sin^2{\theta}\right)}

Using the trigonometric identity sin2x+cos2x=1\sin^2{x}+\cos^2{x}=1, we can simplify to

z=r2(1)z=\sqrt{r^2(1)}

z=rz=r

This means that the limits of integration with respect to zz in cylindrical coordinates are [r,3][r,3].

Next we’ll do the limits of integration for the middle integral. These will be the limits of integration for xx, which means they need to be solved for rr once we get them to cylindrical coordinates.

The lower limit is given by

x=9y2x=-\sqrt{9-y^2}

rcosθ=9(rsinθ)2r\cos{\theta}=-\sqrt{9-\left(r\sin{\theta}\right)^2}

r2cos2θ=9r2sin2θr^2\cos^2{\theta}=9-r^2\sin^2{\theta}

r2sin2θ+r2cos2θ=9r^2\sin^2{\theta}+r^2\cos^2{\theta}=9

r2(sin2θ+cos2θ)=9r^2\left(\sin^2{\theta}+\cos^2{\theta}\right)=9

Since sin2x+cos2x=1\sin^2{x}+\cos^2{x}=1,

r2(1)=9r^2(1)=9

r=±3r=\pm3

The upper limit is given by

x=9y2x=\sqrt{9-y^2}

rcosθ=9(rsinθ)2r\cos{\theta}=\sqrt{9-\left(r\sin{\theta}\right)^2}

r2cos2θ=9r2sin2θr^2\cos^2{\theta}=9-r^2\sin^2{\theta}

r2sin2θ+r2cos2θ=9r^2\sin^2{\theta}+r^2\cos^2{\theta}=9

r2(sin2θ+cos2θ)=9r^2\left(\sin^2{\theta}+\cos^2{\theta}\right)=9

Since sin2x+cos2x=1\sin^2{x}+\cos^2{x}=1,

r2(1)=9r^2(1)=9

r=±3r=\pm3

It looks like the limits of integration for rr in cylindrical coordinates will be given by [3,3][-3,3]. However, remember that rr represents the radius, or distance from the origin. It doesn’t make sense to say that we’re 3-3 units away from the origin. Instead, we always say that the lower bound for rr is 00, such that 00 is the closest we can be to the origin (right on the origin), and 33 is the furthest we can be from the origin. So the limits of integration for rr will be [0,3][0,3].

Finally, we’ll do the limits of integration for the outer integral. These will be the limits of integration for yy, which means they need to be solved for θ\theta once we get them to cylindrical coordinates. But since we’re going to θ\theta, we can just assume that the interval is [0,2π][0,2\pi], because that interval represents the full set of values for θ\theta, which is just the angle between any point and the positive direction of the xx-axis.

Next we’ll use the conversion formulas to convert the function itself into cylindrical coordinates.

xz=rcosθzxz=r\cos{\theta}z

xz=rzcosθxz=rz\cos{\theta}

Putting all of this, plus dV=r dz dr dθdV=r\ dz\ dr\ d\theta into the integral gives

339y29y2x2+y23xz dz dx dy\int^3_{-3}\int^{\sqrt{9-y^2}}_{-\sqrt{9-y^2}}\int^3_{\sqrt{x^2+y^2}}xz\ dz\ dx\ dy

02π03r3rzcosθ(r dz dr dθ)\int^{2\pi}_0\int^3_{0}\int^3_rrz\cos{\theta}\left(r\ dz\ dr\ d\theta\right)

02π03r3r2zcosθ dz dr dθ\int^{2\pi}_0\int^3_{0}\int^3_rr^2z\cos{\theta}\ dz\ dr\ d\theta

Changing triple integrals to cylindrical coordinates for Calculus 3.jpg

we’ll need to convert the limits of integration, the function itself, and dV from rectangular coordinates to cylindrical coordinates.

We always integrate from the inside out, which means we’ll integrate first with respect to zz, treating all other variables as constants.

02π0312r2z2cosθz=rz=3 dr dθ\int^{2\pi}_0\int^3_{0}\frac12r^2z^2\cos{\theta}\Big|^{z=3}_{z=r}\ dr\ d\theta

02π0312r2(3)2cosθ12r2(r)2cosθ dr dθ\int^{2\pi}_0\int^3_{0}\frac12r^2(3)^2\cos{\theta}-\frac12r^2(r)^2\cos{\theta}\ dr\ d\theta

02π0392r2cosθ12r4cosθ dr dθ\int^{2\pi}_0\int^3_{0}\frac92r^2\cos{\theta}-\frac12r^4\cos{\theta}\ dr\ d\theta

Now we’ll integrate with respect to rr, treating all other variables as constants.

02π92(3)r3cosθ12(5)r5cosθr=0r=3 dθ\int^{2\pi}_0\frac{9}{2(3)}r^3\cos{\theta}-\frac{1}{2(5)}r^5\cos{\theta}\Big|^{r=3}_{r=0}\ d\theta

02π32r3cosθ110r5cosθr=0r=3 dθ\int^{2\pi}_0\frac{3}{2}r^3\cos{\theta}-\frac{1}{10}r^5\cos{\theta}\Big|^{r=3}_{r=0}\ d\theta

02π32(3)3cosθ110(3)5cosθ[32(0)3cosθ110(0)5cosθ] dθ\int^{2\pi}_0\frac{3}{2}(3)^3\cos{\theta}-\frac{1}{10}(3)^5\cos{\theta}-\left[\frac{3}{2}(0)^3\cos{\theta}-\frac{1}{10}(0)^5\cos{\theta}\right]\ d\theta

02π812cosθ24310cosθ dθ\int^{2\pi}_0\frac{81}{2}\cos{\theta}-\frac{243}{10}\cos{\theta}\ d\theta

02π40510cosθ24310cosθ dθ\int^{2\pi}_0\frac{405}{10}\cos{\theta}-\frac{243}{10}\cos{\theta}\ d\theta

02π16210cosθ dθ\int^{2\pi}_0\frac{162}{10}\cos{\theta}\ d\theta

02π815cosθ dθ\int^{2\pi}_0\frac{81}{5}\cos{\theta}\ d\theta

Now we’ll integrate with respect to θ\theta.

815sinθ02π\frac{81}{5}\sin{\theta}\Big|^{2\pi}_0

815sin(2π)815sin(0)\frac{81}{5}\sin{(2\pi)}-\frac{81}{5}\sin{(0)}

815(0)815(0)\frac{81}{5}(0)-\frac{81}{5}(0)

00

This means that the volume given by this triple integral is 00.

 
Krista King.png
 

Get access to the complete Calculus 3 course