Now we can find the derivative of the unit tangent vector T′(t). We’ll need to use quotient rule to find the derivatives of the coefficients on i, j, and k.
T′(t)=(√t2+5)2(0)√t2+5−(2)[21(t2+5)−21(2t)]i+(√t2+5)2(1)√t2+5−(t)[21(t2+5)−21(2t)]j
+(√t2+5)2(0)√t2+5−(1)[21(t2+5)−21(2t)]k
T′(t)=t2+5−2t(t2+5)−21i+t2+5√t2+5−t2(t2+5)−21j+t2+5−t(t2+5)−21k
T′(t)=−(t2+5)232ti+t2+5√t2+5−√t2+5t2j−(t2+5)23tk
T′(t)=−(t2+5)232ti+t2+5√t2+5t2+5−√t2+5t2j−(t2+5)23tk
T′(t)=−(t2+5)232ti+t2+5√t2+5t2+5−t2j−(t2+5)23tk
T′(t)=−(t2+5)232ti+t2+5√t2+55j−(t2+5)23tk
T′(t)=−(t2+5)232ti+(t2+5)235j−(t2+5)23tk
Then we’ll find the magnitude of the derivative of the unit tangent vector ∣T′(t)∣.
∣T′(t)∣=√[T′(t)1]2+[T′(t)2]2+[T′(t)3]2
∣T′(t)∣=√[−(t2+5)232t]2+[(t2+5)235]2+[−(t2+5)23t]2
∣T′(t)∣=√(t2+5)34t2+(t2+5)325+(t2+5)3t2
∣T′(t)∣=√(t2+5)35t2+25
∣T′(t)∣=√(t2+5)35(t2+5)
∣T′(t)∣=√(t2+5)25
∣T′(t)∣=t2+5√5
Finally we can solve for the curvature κ(t) of the vector function
κ(t)=∣r′(t)∣∣T′(t)∣
κ(t)=2√t2+5t2+5√5
κ(t)=2(t2+5)23√5
This is the curvature of the vector function.