How to find the direction cosines and direction angles of a vector

 
 
Direction cosines and direction angles blog post.jpeg
 
 
 

What are the direction cosines and direction angles?

We’ll use the following formulas to find direction cosines and direction angles of a vector.

The direction cosine formulas are

cosα=xDa\cos{\alpha}=\frac{x}{D_a}

cosβ=yDa\cos{\beta}=\frac{y}{D_a}

cosΥ=zDa\cos{\Upsilon}=\frac{z}{D_a}

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

and the direction angle formulas are

α=arccosxDa\alpha=\arccos{\frac{x}{D_a}}

β=arccosyDa\beta=\arccos{\frac{y}{D_a}}

Υ=arccoszDa\Upsilon=\arccos{\frac{z}{D_a}}

where a=x,y,za=\langle{x},y,z\rangle represents the vector and DaD_a represents the vector length, and where the direction angles are measured in degrees.

Realize that the direction angles are found by taking arccos\arccos of both sides of the direction cosine formulas.

 
 

How to find the direction cosines and direction angles of a vector


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Building the direction cosines and direction angles after converting the vector into standard form

Example

Find the direction cosines and direction angles of the vector.

5x3y+z=25x-3y+z=2

We’ll change the vector function into standard form.

5x3y+z=25x-3y+z=2

a=5,3,1a=\langle5,-3,1\rangle

Next we’ll use the distance formula to find the length of the vector aa. Remember that the initial point of the vector is the origin (0,0,0)(0,0,0), and the terminal point is (5,3,1)(5,-3,1).

Da=(50)2+(30)2+(10)2D_a=\sqrt{(5-0)^2+(-3-0)^2+(1-0)^2}

Da=25+9+1D_a=\sqrt{25+9+1}

Da=35D_a=\sqrt{35}

Plugging this value and the vector aa into the direction cosine formulas, we get

cosα=535\cos{\alpha}=\frac{5}{\sqrt{35}}

cosβ=335\cos{\beta}=\frac{-3}{\sqrt{35}}

cosΥ=135\cos{\Upsilon}=\frac{1}{\sqrt{35}}

Direction cosines and direction angles for Calculus 3.jpg

Realize that the direction angles are found by taking arccos of both sides of the direction cosine formulas.

Taking arccos\arccos of both sides of our direction cosines, we’ll be the values for the direction angles, which will be in degrees.

α=arccos535\alpha=\arccos{\frac{5}{\sqrt{35}}}

α=32.3\alpha=32.3^\circ

and

β=arccos335\beta=\arccos{\frac{-3}{\sqrt{35}}}

β=120.5\beta=120.5^\circ

and

Υ=arccos135\Upsilon=\arccos{\frac{1}{\sqrt{35}}}

Υ=80.3\Upsilon=80.3^\circ

To summarize our findings, we can say that

the direction cosines are

cosα=535\cos{\alpha}=\frac{5}{\sqrt{35}}

cosβ=335\cos{\beta}=\frac{-3}{\sqrt{35}}

cosΥ=135\cos{\Upsilon}=\frac{1}{\sqrt{35}}

the direction angles are

α=32.3\alpha=32.3^\circ

β=120.5\beta=120.5^\circ

Υ=80.3\Upsilon=80.3^\circ

 
Krista King.png
 

Get access to the complete Calculus 3 course