Finding the midpoint of a line segment in three dimensions

 
 
Midpoint of a line segment in three dimensions blog post.jpeg
 
 
 

Defining the formula for the midpoint of a line segment in three-dimensional space

In this lesson we’ll look at how to find the midpoint of a line segment in three dimensions when we’re given the endpoints of the line segment as coordinates in three-dimensional space.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Midpoint formula

We can use the midpoint formula for three dimensions to find the middle of the line segment that has endpoints P1=(x1,y1,z1)P_1=(x_1,y_1,z_1) and P2=(x2,y2,z2)P_2=(x_2,y_2,z_2), which is

M=(x1+x22,y1+y22,z1+z22)M=\left( \frac{{{x}_{1}}+{{x}_{2}}}{2},\frac{{{y}_{1}}+{{y}_{2}}}{2},\frac{{{z}_{1}}+{{z}_{2}}}{2} \right)

 
 

Applying the midpoint formula to three dimensions


 
Krista King Math Signup.png
 
Geometry course.png

Take the course

Want to learn more about Geometry? I have a step-by-step course for that. :)

 
 

 
 

Finding midpoints and endpoints using the midpoint formula for line segments

Example

Find the midpoint of a line segment joining points P1{{P}_{1}} and P2{{P}_{2}}.

P1=(4,6,8){{P}_{1}}=(4,-6,8)

P2=(4,3,5){{P}_{2}}=(4,3,-5)

We’ll use the midpoint formula for the midpoint MM between points in three dimensions.

m=(x1+x22,y1+y22,z1+z22)m=\left( \frac{{{x}_{1}}+{{x}_{2}}}{2},\frac{{{y}_{1}}+{{y}_{2}}}{2},\frac{{{z}_{1}}+{{z}_{2}}}{2} \right)

where P1=(x1,y1,z1){{P}_{1}}=({{x}_{1}},{{y}_{1}},{{z}_{1}}) and P2=(x2,y2,z2){{P}_{2}}=({{x}_{2}},{{y}_{2}},{{z}_{2}}). We’ll plug in the points we’ve been given, using P1=(4,6,8){{P}_{1}}=(4,-6,8) and P2=(4,3,5){{P}_{2}}=(4,3,-5).

m=(4+42,6+32,8+52)=(82,32,32)=(4,1.5,1.5)m=\left( \frac{4+4}{2},\frac{-6+3}{2},\frac{8+-5}{2} \right)=\left( \frac{8}{2},\frac{-3}{2},\frac{3}{2} \right)=(4,-1.5,1.5)


Let’s work through a different type of example.


Midpoint of a line segment in three dimensions for Geometry

We can use the midpoint formula for three dimensions to find the middle of the line segment.

Example

Find point AA if MM is the midpoint of AB\overline{AB}.

M=(4.5,3.5,3)M=(4.5,-3.5,3)

B=(2,4,8)B=(2,-4,8)

Let’s use the midpoint formula and set up what we know.

M=(x1+x22,y1+y22,z1+z22)M=\left( \frac{{{x}_{1}}+{{x}_{2}}}{2},\frac{{{y}_{1}}+{{y}_{2}}}{2},\frac{{{z}_{1}}+{{z}_{2}}}{2} \right)

(4.5,3.5,3)=(x1+22,y1+(4)2,z1+82)(4.5,-3.5,3)=\left( \frac{{{x}_{1}}+2}{2},\frac{{{y}_{1}}+(-4)}{2},\frac{{{z}_{1}}+8}{2} \right)

Using the fact that these two points are equivalent, we can set up three equations:

4.5=x1+224.5=\frac{{{x}_{1}}+2}{2}

3.5=y1+(4)2-3.5=\frac{{{y}_{1}}+(-4)}{2}

3=z1+823=\frac{{{z}_{1}}+8}{2}

Solving each equation gives us

4.5=x1+224.5=\frac{{{x}_{1}}+2}{2}

2(4.5)=x1+22(4.5)={{x}_{1}}+2

9=x1+29={{x}_{1}}+2

7=x17={{x}_{1}}

and

3.5=y1+(4)2-3.5=\frac{{{y}_{1}}+(-4)}{2}

2(3.5)=y142(-3.5)={{y}_{1}}-4

7=y14-7={{y}_{1}}-4

3=y1-3={{y}_{1}}

and

3=z1+823=\frac{{{z}_{1}}+8}{2}

2(3)=z1+82(3)={{z}_{1}}+8

6=z1+86={{z}_{1}}+8

2=z1-2={{z}_{1}}

So the coordinates of point AA are (7,3,2)(7,-3,-2).

 
Krista King.png
 

Get access to the complete Geometry course