Perpendicular and angle bisectors

 
 
Perpendicular and angle bisectors blog post.jpeg
 
 
 

What is an angle bisector?

In this lesson we’ll look at how to use the properties of perpendicular and angle bisectors to find out more information about geometric figures.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Angle bisectors

An angle bisector goes through the vertex of an angle and divides the angle into two congruent angles that each measure half of the original angle. If AD\vec{AD} bisects CAB\angle CAB,

 
ray bisecting an angle
 

then

mDAB=mCADm\angle DAB=m\angle CAD

mDAB=12mCAB=mCADm\angle DAB=\frac12m\angle CAB=m\angle CAD

2mDAB=mCAB=2mCAD2m\angle DAB=m\angle CAB=2m\angle CAD

 
 

How to solve problems with perpendicular bisectors and angle bisectors


 
Krista King Math Signup.png
 
Geometry course.png

Take the course

Want to learn more about Geometry? I have a step-by-step course for that. :)

 
 

 
 

Solving for values in a polygon using perpendicular or angle bisectors

Example

If mBAD=31m\angle BAD=31^\circ and mBDC=66m\angle BDC=66^\circ, and AD\overline{AD} is a bisector of both BAC\angle BAC and BDC\angle BDC, what is mCm\angle C?

angle bisector in a parallelogram


Using what we already know, we can say

mBAD=mDAC=31m\angle BAD=m\angle DAC=31^\circ

and

mADC=12mBDC=1266=33m\angle ADC=\frac{1}{2}m\angle BDC=\frac{1}{2}\cdot 66^\circ =33^\circ

The three angles of any triangle add up to 180180^\circ and we have ACD\triangle ACD, so

31+33+mC=18031^\circ +33^\circ +m\angle C=180^\circ

64+mC=18064^\circ +m\angle C=180^\circ

mC=116m\angle C=116^\circ


Perpendicular and angle bisectors for Geometry.jpg

An angle bisector goes through the vertex of an angle and divides the angle into two congruent angles that each measure half of the original angle.

Perpendicular bisectors

A perpendicular bisector crosses a line segment at its midpoint and forms a right angle where it crosses. CD\overline{CD} is a perpendicular bisector of AB\overline{AB} at point EE.

perpendicular line segments

This tells us that

mAEC=mCEB=mAED=mBED=90m\angle AEC=m\angle CEB=m\angle AED=m\angle BED=90^\circ

AE=EB\overline{AE}=\overline{EB}

Let’s look at a few more example problems.


Example

Find the value of yy if CM\overline{CM} is a perpendicular bisector of AJ\overline{AJ}.

perpendicular bisectors

Because CM\overline{CM} is a perpendicular bisector of AJ\overline{AJ}, we know that AM=MJ\overline{AM}=\overline{MJ}, so we can say

5y+8=8.2y5y+8=8.2y

8=3.2y8=3.2y

y=2.5y=2.5


Let’s look at one more problem.


Example

Find mYXMm\angle YXM if XM\overline{XM} is a perpendicular bisector of ZY\overline{ZY}.

perpendicular bisector in a triangle

We know XMY\angle XMY is a right angle, so mXMY=90m\angle XMY=90^\circ. The three angles of any triangle add up to 180180^\circ and we have XMY\triangle XMY.

90+36+mYXM=18090^\circ +36^\circ +m\angle YXM=180^\circ

126+mYXM=180126^\circ +m\angle YXM=180^\circ

mYXM=54m\angle YXM=54^\circ

 
Krista King.png
 

Get access to the complete Geometry course