Probability density functions and probability of X in an interval

 
 
Probability density functions blog post.jpeg
 
 
 

Probability density functions must meet two specific criteria

Probability density refers to the probability that a continuous random variable XX will exist within a set of conditions.

It follows that using the probability density equations will tell us the likelihood of an XX existing in the interval [a,b][a,b].

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

A probability density function f(x)f(x) must meet these conditions:

  1. f(x)0f(x)\ge0 for all values of xx

  2. f(x) dx=1\int^\infty_{-\infty}f(x)\ dx=1

The equation for probability density is

P(aXb)=abf(x) dxP(a\le{X}\le{b})=\int^b_af(x)\ dx

where P(aXb)P(a\le{X}\le{b}) is the probability that XX exists in [a,b][a,b].

 
 

How to identify, and then solve a probability density function


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Showing that f(x) is a probability density function, then finding the probability that X lies in an interval

Example

Let f(x)=(x35,000)(10x)f(x)=\left(\frac{x^3}{5,000}\right)(10-x) for 0x100\le{x}\le{10} and f(x)=0f(x)=0 for all other values of xx. Show that f(x)f(x) is a probability density function and find P(1X4)P(1\le{X}\le{4}).

The first thing we need to do is show that f(x)f(x) is a probability density function. We can see that the interval 0x100\le{x}\le{10} is positive. For all other possibilities we know that f(x)=0f(x)=0. This means we’ve satisfied the first criteria for a probability density equation. Now we need to verify that

f(x) dx=1\int^\infty_{-\infty}f(x)\ dx=1

We can set the interval to [0,10][0,10] since it’s only in this interval that the equation doesn’t equal 00.

f(x) dx=010(x35,000)(10x) dx\int^\infty_{-\infty}f(x)\ dx=\int^{10}_0\left(\frac{x^3}{5,000}\right)(10-x)\ dx

f(x) dx=010x3500x45,000 dx\int^\infty_{-\infty}f(x)\ dx=\int^{10}_0\frac{x^3}{500}-\frac{x^4}{5,000}\ dx

f(x) dx=010x3500 dx+010x45,000 dx\int^\infty_{-\infty}f(x)\ dx=\int^{10}_0\frac{x^3}{500}\ dx+\int^{10}_0-\frac{x^4}{5,000}\ dx

f(x) dx=x42,000x525,000010\int^\infty_{-\infty}f(x)\ dx=\frac{x^4}{2,000}-\frac{x^5}{25,000}\bigg|^{10}_0

f(x) dx=[(10)42,000(10)525,000][(0)42,000(0)525,000]\int^\infty_{-\infty}f(x)\ dx=\left[\frac{(10)^4}{2,000}-\frac{(10)^5}{25,000}\right]-\left[\frac{(0)^4}{2,000}-\frac{(0)^5}{25,000}\right]

f(x) dx=1\int^\infty_{-\infty}f(x)\ dx=1

The equation has met both of the criteria, so we’ve verified that it’s a probability density function.

Probability density functions for Calculus 2.jpg

using the probability density equations will tell us the likelihood of an x existing in the interval [a,b].

In order to solve for P(1X4)P(1\le{X}\le{4}), we’ll identify the interval [1,4][1,4] and plug it into the probability density equation.

P(aXb)=abf(x) dxP(a\le{X}\le{b})=\int^b_af(x)\ dx

P(1X4)=14(x35,000)(10x) dxP(1\le{X}\le{4})=\int^4_1\left(\frac{x^3}{5,000}\right)(10-x)\ dx

P(1X4)=14x3500x45,000 dxP(1\le{X}\le{4})=\int^4_1\frac{x^3}{500}-\frac{x^4}{5,000}\ dx

P(1X4)=14x3500 dx+010x45,000 dxP(1\le{X}\le{4})=\int^4_1\frac{x^3}{500}\ dx+\int^{10}_0-\frac{x^4}{5,000}\ dx

P(1X4)=x42,000x525,00014P(1\le{X}\le{4})=\frac{x^4}{2,000}-\frac{x^5}{25,000}\bigg|^4_1

P(1X4)=[(4)42,000(4)525,000][(1)42,000(1)525,000]P(1\le{X}\le{4})=\left[\frac{(4)^4}{2,000}-\frac{(4)^5}{25,000}\right]-\left[\frac{(1)^4}{2,000}-\frac{(1)^5}{25,000}\right]

P(1X4)=0.0866P(1\le{X}\le{4})=0.0866

The answer tell us that the probability of XX existing between 11 and 44 is about 8.66%8.66\%.

 
Krista King.png
 

Get access to the complete Calculus 2 course