Finding the equation of a plane

 
 
Equation of a plane blog post.jpeg
 
 
 

Formulas for the equation of a plane

The equation of a plane is given by the formula

a(xx1)+b(yy1)+c(zz1)=0a(x-x_1)+b(y-y_1)+c(z-z_1)=0

where a,b,c\langle{a},b,c\rangle are the direction numbers from the normal vector to the plane.

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Given three points in the plane P(P1,P2,P3)P(P_1,P_2,P_3), Q(Q1,Q2,Q3)Q(Q_1,Q_2,Q_3) and R(R1,R2,R3)R(R_1,R_2,R_3), we can find the equation of the plane by

using the points to generate two vectors

PQ=(Q1P1),(Q2P2),(Q3P3)\vec{PQ}=\langle(Q_1-P_1),(Q_2-P_2),(Q_3-P_3)\rangle

PR=(R1P1),(R2P2),(R3P3)\vec{PR}=\langle(R_1-P_1),(R_2-P_2),(R_3-P_3)\rangle,

taking the cross product of PQ\vec{PQ} and PR\vec{PR} to get the normal vector to the plane

PQ×PR=iamp;jamp;kPQ1amp;PQ2amp;PQ3PR1amp;PR2amp;PR3=iPQ2amp;PQ3PR2amp;PR3jPQ1amp;PQ3PR1amp;PR3+kPQ1amp;PQ2PR1amp;PR2\vec{PQ}\times\vec{PR}=\begin{vmatrix}\bold i&\bold j&\bold k\\PQ_1&PQ_2&PQ_3\\PR_1&PR_2&PR_3\end{vmatrix}=\bold i\begin{vmatrix}PQ_2&PQ_3\\PR_2&PR_3\end{vmatrix}-\bold j\begin{vmatrix}PQ_1&PQ_3\\PR_1&PR_3\end{vmatrix}+\bold k\begin{vmatrix}PQ_1&PQ_2\\PR_1&PR_2\end{vmatrix}

=i(PQ2PR3PQ3PR2)j(PQ1PR3PQ3PR1)=\bold i(PQ_2PR_3-PQ_3PR_2)-\bold j(PQ_1PR_3-PQ_3PR_1)

+k(PQ1PR2PQ2PR1)+\bold k(PQ_1PR_2-PQ_2PR_1)

and then plugging the given points and the normal vector into the formula for the equation of the plane.

 
 

Given three points that lie in the plane, we’ll use a specific formula to find th equation of the plane


 
Krista King Math Signup.png
 
Calculus 3 course.png

Take the course

Want to learn more about Calculus 3? I have a step-by-step course for that. :)

 
 

 
 

Finding a plane from three points that lie in the plane

Example

Find the equation of the plane that passes through the given points.

P(1,0,2)P(1,0,2)

Q(2,1,3)Q(2,-1,3)

R(1,1,2)R(1,-1,2)

We’ll start by using the given points PP, QQ and RR to find two vectors PQ\vec{PQ} and PR\vec{PR} that lie in the plane.

PQ=(21),(10),(32)\vec{PQ}=\left\langle(2-1),(-1-0),(3-2)\right\rangle

PQ=1,1,1\vec{PQ}=\left\langle1,-1,1\right\rangle

and

PR=(11),(10),(22)\vec{PR}=\left\langle(1-1),(-1-0),(2-2)\right\rangle

PR=0,1,0\vec{PR}=\left\langle0,-1,0\right\rangle

Equation of a plane for Calculus 3.jpg

We’ll start by using the given points P, Q and R to find two vectors PQ and PR that lie in the plane.

Taking the cross product of these two vectors, we get

PQ×PR=iamp;jamp;k1amp;1amp;10amp;1amp;0\vec{PQ}\times\vec{PR}=\begin{vmatrix}\bold i&\bold j&\bold k\\1&-1&1\\0&-1&0\end{vmatrix}

PQ×PR=i1amp;11amp;0j1amp;10amp;0+k1amp;10amp;1\vec{PQ}\times\vec{PR}=\bold i\begin{vmatrix}-1&1\\-1&0\end{vmatrix}-\bold j\begin{vmatrix}1&1\\0&0\end{vmatrix}+\bold k\begin{vmatrix}1&-1\\0&-1\end{vmatrix}

PQ×PR=[(1)(0)(1)(1)]i[(1)(0)(1)(0)]j+[(1)(1)(1)(0)]k\vec{PQ}\times\vec{PR}=\left[(-1)(0)-(1)(-1)\right]\bold i-\left[(1)(0)-(1)(0)\right]\bold j+\left[(1)(-1)-(-1)(0)\right]\bold k

PQ×PR=(0+1)i(00)j+(10)k\vec{PQ}\times\vec{PR}=(0+1)\bold i-(0-0)\bold j+(-1-0)\bold k

PQ×PR=1i0j1k\vec{PQ}\times\vec{PR}=1\bold i-0\bold j-1\bold k

PQ×PR=1,0,1\vec{PQ}\times\vec{PR}=\langle 1,0,-1\rangle

Now we’ll plug any of the given points, we’ll use PP, and the direction numbers from the cross product into the formula for the equation of the plane.

(1)(x1)+(0)(y0)+(1)(z2)=0(1)(x-1)+(0)(y-0)+(-1)(z-2)=0

x1z+2=0x-1-z+2=0

xz=1x-z=-1

 
Krista King.png
 

Get access to the complete Calculus 3 course