Using the ratio test to determine whether or not a series converges

 
 
Ratio test blog post.jpeg
 
 
 

What is the ratio test, and what does it show?

The ratio test for convergence lets us determine the convergence or divergence of a series ana_n using the limit

L=limnan+1anL=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|

Krista King Math.jpg

Hi! I'm krista.

I create online courses to help you rock your math class. Read more.

 

Once we find a value for LL, we can say that

the series converges absolutely if L<1L<1.

the series diverges if L>1L>1 or if LL is infinite.

the test is inconclusive if L=1L=1.

The ratio test is used most often when our series includes a factorial or something raised to the nnth power.

 
 

Using the ratio test to determine whether the series converges absolutely or diverges


 
Krista King Math Signup.png
 
Calculus 2 course.png

Take the course

Want to learn more about Calculus 2? I have a step-by-step course for that. :)

 
 

 
 

Proving absolute convergence with the ratio test

Example

Use the ratio test to say whether the series converges or diverges.

n=1n34n\sum^{\infty}_{n=1}\frac{n^3}{4^n}

To use the ratio test, we need to solve for the limit

L=limnan+1anL=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|

and then evaluate the value of LL.

L=limn(n+1)34n+1n34nL=\lim_{n\to\infty}\left|\frac{\frac{(n+1)^3}{4^{n+1}}}{\frac{n^3}{4^n}}\right|

Ratio test for Calculus 2.jpg

The ratio test is used most often when our series includes a factorial or something raised to the nth power.

We can drop the absolute value bars since all of our terms will be positive.

L=limn(n+1)34n+1n34nL=\lim_{n\to\infty}\frac{\frac{(n+1)^3}{4^{n+1}}}{\frac{n^3}{4^n}}

L=limn(n+1)34n+1(4nn3)L=\lim_{n\to\infty}\frac{(n+1)^3}{4^{n+1}}\left(\frac{4^n}{n^3}\right)

Grouping like bases together, we get

L=limn(n+1)3n3(4n4n+1)L=\lim_{n\to\infty}\frac{(n+1)^3}{n^3}\left(\frac{4^n}{4^{n+1}}\right)

L=limn(n+1)3n3(4n(n+1))L=\lim_{n\to\infty}\frac{(n+1)^3}{n^3}\left(4^{n-(n+1)}\right)

L=limn(n+1)3n3(41)L=\lim_{n\to\infty}\frac{(n+1)^3}{n^3}\left(4^{-1}\right)

L=limn(n+1)3n3(14)L=\lim_{n\to\infty}\frac{(n+1)^3}{n^3}\left(\frac14\right)

L=14limn(n+1)3n3L=\frac14\lim_{n\to\infty}\frac{(n+1)^3}{n^3}

L=14limnn3+3n2+3n+1n3L=\frac14\lim_{n\to\infty}\frac{n^3+3n^2+3n+1}{n^3}

L=14limnn3+3n2+3n+1n3(1n31n3)L=\frac14\lim_{n\to\infty}\frac{n^3+3n^2+3n+1}{n^3}\left(\frac{\frac{1}{n^3}}{\frac{1}{n^3}}\right)

L=14limnn3n3+3n2n3+3nn3+1n3n3n3L=\frac14\lim_{n\to\infty}\frac{\frac{n^3}{n^3}+\frac{3n^2}{n^3}+\frac{3n}{n^3}+\frac{1}{n^3}}{\frac{n^3}{n^3}}

L=14limn1+3n+3n2+1n31L=\frac14\lim_{n\to\infty}\frac{1+\frac{3}{n}+\frac{3}{n^2}+\frac{1}{n^3}}{1}

L=(14)1+3+3+11L=\left(\frac14\right)\frac{1+\frac{3}{\infty}+\frac{3}{\infty}+\frac{1}{\infty}}{1}

L=(14)1+0+0+01L=\left(\frac14\right)\frac{1+0+0+0}{1}

L=14L=\frac14

Since L<1L<1, we can say that the original series ana_n converges absolutely.

 
Krista King.png
 

Get access to the complete Calculus 2 course